82-Pb-208 JAEA EVAL-MAR10 O.Iwamoto, N.Iwamoto DIST-DEC21 20150816 ----JENDL-5 MATERIAL 8237 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 10-03 Resonace parameters were evaluated by N. Iwamoto. Cross sections and spectra were evaluated and compiled by O. Iwamoto. 13-02 JENDL-4.0u1 Covariance data (MF33/1,2,4,16,17,51-91,102,MF34/2) were added. 20-01 JENDL-5alpha2 Inelastic scattering cross sections were revised by N.Iwamoto. 21-11 revised by O.Iwamoto (MF8/MT16,17,22,28,102,103,107) JENDL/AD-2017 adopted (MF8/MT4) added 21-11 above 20 MeV, JENDL-4.0/HE merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MF= 2 Resonance parameters MT=151 Resolved resonance parameters for Reich-Moore formula. Resonance ranges: 1.0e-5 eV to 1 MeV Parameters were evaluated from the data of Mughabghab /1/. Effective scattering radius of 9.75 fm was selected. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barns) (barns) ---------------------------------------------------------- Total 1.14581E+01 Elastic 1.14579E+01 n,gamma 2.30374E-04 4.01052E-03 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Based on experimental data/2,3/ and CCONE calculation. MT= 2 Elastic scattering cross section Obtained by subtracting non-elastic cross sections from total cross sections. MT= 4,51-91 (n,n') cross section Calculated with CCONE code /4/. ** for JENDL-5alpha2 ***************************************** The cross sections of MT=4,51,52,53,56,57,58,61,62,64,67,69, 71,75 were revised, based on the experimental data of Mihailescu+ (2008). ************************************************************** MT= 16 (n,2n) cross section Calculated with CCONE code /4/. MT= 17 (n,3n) cross section Calculated with CCONE code /4/. MT= 22 (n,na) cross section Calculated with CCONE code /4/. MT= 28 (n,np) cross section Calculated with CCONE code /4/. MT=102 Capture cross section Calculated with CCONE code /4/. MT=103 (n,p) cross section Calculated with CCONE code /4/. MT=107 (n,a) cross section The (n,a) cross section below 1 MeV was calculated from resonance parameters, by assuming a mean alpha width of 1.0e-6 eV, except for negative resonance with 1.23e-2 eV, so as to reproduce the cross section ratio at thermal energy /5/. The cross section was averaged in suitable energy intervals. Above 1 MeV, the cross section was connected smoothly to the CCONE calculation. MF= 4 Angular distributions of emitted neutrons MT= 2 Elastic scattering Calculated with CCONE code /4/. MF= 6 Energy-angle distributions of emitted particles MT= 16 (n,2n) reaction Neutron spectra calculated with CCONE code/4/. MT= 17 (n,3n) reaction Neutron spectra calculated with CCONE code/4/. MT= 22 (n,na) reaction Neutron spectra calculated with CCONE code/4/. MT= 28 (n,np) reaction Neutron spectra calculated with CCONE code/4/. MT= 51-91 (n,n') reaction Neutron angular distributions and spectra calculated with CCONE code/4/. MT= 102 Capture cross section Gamma-ray spectra calculated with CCONE code/4/. MF=33 Covariances of neutron cross sections Covariance data were basically evaluated with CCONE code/4/ and KALMAN code/6/. Evaluated data with the other methods are described bellow. MT=1 Total cross section 1.0e-5 eV to 1 MeV(RRR): given by a sum of the covariance data of the elastic scattering and the neutron capture cross sections. 1 MeV to 7 MeV: obtained based on the average cross section of the experimental data/2/,/3/. 6 MeV to 20 MeV: obtained by the CCONE-KALMAN. MT=2 Elastic scattering cross sections 1.0e-5 eV to 1 MeV(RRR): obtained by the kernel approximation/7/. 1 MeV to 20 MeV: obtained by the CCONE-KALMAN. MT=102 Capture cross section 1.0e-5 eV to 1 MeV(RRR): obtained by the kernel approximation/7/. 1 MeV to 20 MeV: obtained by the CCONE-KALMAN. MF=34 Covariances for Angular Distributions MT=2 Elastic scattering Obtained by the CCONE-KALMAN. ***************************************************************** * Nuclear Model Calculation with CCONE code /4/ * ***************************************************************** Models and parameters used in the CCONE calculation 1) Optical model neutron OMP: Koning et al./8/ proton OMP: Koning and Delaroche /9/ alpha OMP: Avrigeanu et al./10/ with modification 2) Two-component exciton model/11/ * Global parametrization of Koning-Duijvestijn/12/ was used. * Gamma emission channel/13/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Moldauer width fluctuation correction/14/ was included. * Neutron, proton, alpha and gamma decay channels were included. * Transmission coefficients of neutrons, proton and alpha were taken from optical model calculation. * The level scheme of the target is shown in Table 1. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction and collective enhancement factor. Parameters are shown in Table 2. * Gamma-ray strength function of Kopecky et al/15/,/16/ was used. The prameters are shown in Table 3. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Level Scheme of Pb-208 --------------------------------- No. Ex(MeV) J PI, DWBA: L beta --------------------------------- 0 0.00000 0 + 1 2.61455 3 - 3 0.09 2 3.19774 5 - 5 0.03 3 3.47511 4 - 4 3.70844 5 - 5 0.02 5 3.91980 6 - 6 3.94644 4 - 7 3.96096 5 - 5 0.01 8 3.99570 5 - 9 4.03700 7 - 7 0.02 10 4.04500 6 - 11 4.05050 3 - 3 0.02 12 4.08540 2 + 13 4.10600 3 - 3 0.03 14 4.12531 4 - 15 4.14100 2 + 16 4.15900 2 + 17 4.18041 5 - 18 4.20540 6 - 19 4.22950 2 - 20 4.23000 4 - 21 4.25350 3 - 3 0.07 22 4.26240 5 - 23 4.29617 5 - 24 4.31800 2 + 25 4.32320 4 + --------------------------------- Table 2. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Pb-209 24.1961 0.8301 -8.6072 0.6523 0.8730 5.6376 Pb-208 26.5095 1.6641 -9.9611 0.6945 1.6735 8.9801 Pb-207 25.6831 0.8341 -9.5535 0.7157 0.5055 8.8352 Pb-206 26.2968 1.6722 -8.3925 0.7059 0.4426 10.1593 Tl-208 24.0995 0.0000 -7.9260 0.7127 -0.9908 7.4338 Tl-207 24.0029 0.8341 -9.1989 0.6784 1.0665 6.0451 Tl-206 23.9062 0.0000 -9.0786 0.7703 -0.8614 9.5127 Hg-207 24.0029 0.8341 -6.5458 0.4118 1.3479 1.8341 Hg-206 23.9062 1.6722 -8.0262 0.6306 1.6426 6.0277 Hg-205 23.8095 0.8381 -7.7955 0.6870 0.1648 7.1525 Hg-204 23.7127 1.6803 -7.2319 0.7544 -0.2408 10.8925 Hg-203 23.6158 0.8422 -6.5295 0.7165 -0.9421 8.7294 Hg-202 23.5189 1.6886 -5.9276 0.7363 -0.7512 10.4860 -------------------------------------------------------- Table 3. Gamma-ray strength function for Pb-209 -------------------------------------------------------- * E1: ER = 12.00 (MeV) EG = 4.00 (MeV) SIG = 500.00 (mb) * M1: ER = 6.91 (MeV) EG = 4.00 (MeV) SIG = 2.29 (mb) * E2: ER = 10.62 (MeV) EG = 3.60 (MeV) SIG = 5.32 (mb) -------------------------------------------------------- References 1) S.F.Mughabghab: "Atlas of Neutron Resonances, Fifth Edition: Resonance Parameters and Thermal Cross Sections. Z=1-100", Elsevier Science (2006). 2) R.F.Carlton et al.: Bull. Amer. Phys. Soc., 36, 1349(J10-10) (1991) 3) J.A.Harvey: private communication in EXFOR(13732002). 4) O.Iwamoto: J. Nucl. Sci. Technol., 44, 687 (2007). 5) J.Alam and M.I.Sehgal: Nucl. Phys. A205, 614 (1973) 6) T.Kawano, K.Shibata, JAERI-Data/Code 97-037 (1997) in Japanese. 7) P.Pblozinsky et al.: NL-91287-2010 (2010). 8) A.J.Koning et al.: Nucl. Sci. Eng., 156, 357 (2007). 9) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003). 10) V.Avrigeanu,P.E.Hodgson, and M.Avrigeanu, Report OUNP-94-02 (1994), Phys. Rev. C49,2136 (1994). 11) C.Kalbach: Phys. Rev. C33, 818 (1986). 12) A.J.Koning, M.C.Duijvestijn: Nucl. Phys. A744, 15 (2004). 13) J.M.Akkermans, H.Gruppelaar: Phys. Lett. 157B, 95 (1985). 14) P.A.Moldauer: Nucl. Phys. A344, 185 (1980). 15) J.Kopecky, M.Uhl: Phys. Rev. C41, 1941 (1990). 16) J.Kopecky, M.Uhl, R.E.Chrien: Phys. Rev. C47, 312 (1990).