92-U -238 JAEA+ EVAL-NOV09 O.Iwamoto,N.Otuka,S.Chiba,+ DIST-DEC21 20111206 ----JENDL-5 MATERIAL 9237 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 06-07 (n,2n) cross section was revised. 06-10 nu-p was revised. 07-04 Calculation with CCONE code was performed. 07-06 Fission spectra above 5.5 MeV were revised. 07-11 Fission cross section was revised with simultaneous evaluation. 07-12 Fission cross section was revised with results of new simultaneous evaluation. Unresolved resonance parameters were revised. 08-01 Fission cross section was revised. 08-03 Fission and capture cross sections, and nu-p were revised. CCONE calculation was made with revised parameters. Interpolation of (5,18) was changed. Data were compiled as JENDL/AC-2008/1/. 09-08 (MF1,MT458) was evaluated. 09-10 fission cross section was modified slightly. 09-11 Results of new CCONE calculation were adopted. 10-03 Covariance data were given. 11-07 Covariance data in RRR were revised. 18-08 JENDL-5a (MF2/MT151) RRP from ENDF/B-VIII.0 19-12 JENDL-5a2 (MT2/18) SOK-2019 was adopted 20-09 (MT1/MF456) revised (MT1/MF51) ENDF/B-VIII.0(CIELO) was adopted 20-10 JENDL-5a4 (MF3/MT18) SOK(20201009) was adopted above 10 keV (MF3/MT19,20,21,38) deleted 21-06 JENDL-5b1 (MF2/MT151) RRP from ENDF/B-VIII.0 with modification (MF3/MT2) calculated from total and reaction cross sections (MF3/MT18) SOK(20210404) was adopted above 10 keV with modifification for energies in 1.5-3.5 MeV 21-07 JENDL-5b2 (MF2/MT151) adjuisted RRP above 100 eV (MF3/MT1) sum of partial (MF3/MT2) adjusted (MF3/MT18) adjusted (MF5/MT102) adjusted 21-11 revised by O.Iwamoto (MF8/MT16-18,37,102) JENDL/AD-2017 adopted (MF8/MT4) added 21-11 above 20 MeV, JENDL-4.0/HE merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto 21-12 (MF33/MT1,2,18,102) modified by O.Iwamoto ENDF/B-VIII.0 (En < 20 keV) 21-12 (MF33/MT18) modified by O.Iwamoto SOK(20210404,rectangle) (En > 20 keV) 1% unc. added (1.5 MeV < En < 3.5 MeV) for adjustment 21-12 (MF3/MT18) above 20 MeV SOK(20210404) adoped by O.Iwamoto 21-12 (MF1/MT452,456) by O.Iwamoto revise nu-p (En > 20 MeV) by a systematics (MF6/MT5) by O.Iwamoto modify multiplicity of ZAP=1 to compensate the revision of nu-p MF= 1 MT=452 Total number of neutrons per fission Sum of MT=455 and 456. MT=455 Delayed neutron data (same as JENDL-3.3/2/) Experimental data of Krick and Evans /3/ were renormalized to those of Meadows /4/, and the least-squares fitting was carried out with the SOK code /5/. Decay constants were adopted from Keepin et al. /6/ MT=456 Number of prompt neutrons per fission Experimental data reported after 1960 were considered: Butler et al./7/, Conde et al./8/, Asplund-Nilsson/9/, Mather et al./10/, Vorob'jova et al./11/, Bao/12/, Nurpeisov et al./13/, Frehaut et al./14,15/, Malinovskij et al./16/, Boykov et al./17/, Smirenkin et al./18/. Cf-252 nu-p of 3.756 /19/ was used. These experimental data were fitted with two straight lines below and above 14 MeV. MT=458 Components of energy release due to fission Total energy and prompt energy were calculated from mass balance using JENDL-4 fission yields data and mass excess evaluation. Mass excess values were from Audi's 2009 evaluation/20/. Delayed energy values were calculated from the energy release for infinite irradiation using JENDL FP Decay Data File 2000 and JENDL-4 yields data. For delayed neutron energy, as the JENDL FP Decay Data File 2000/21/ does not include average neutron energy values, the average values were calculated using the formula shown in the report by T.R. England/22/. The fractions of prompt energy were calculated using the fractions of Sher's evaluation/23/ when they were provided. When the fractions were not given by Sher, averaged fractions were used. MF= 2 Resonance parameters MT=151 Resolved resonance parameters (RM: 1.0E-5 - 20 keV) The data of ENDF/B-VII/24/ were adopted. The parameters were analyzed by Derrien et al./25/ with SAMMY code /26/ and experimental data up to 20 keV/27,28,29,30,31,etc./ The thermal capture cross section was adjusted to 2.683 b evaluated by Trkov et al./32/ Unresolved resonance parameters (20 keV - 150 keV) The parameters are used only for calculation of self- shielding factors. Thermal cross sections and resonance integrals (at 300K) ------------------------------------------------------- 0.0253 eV reson. integ.(*) (barns) (barns) ------------------------------------------------------- total 11.983 elastic 9.300 fission 1.68E-5 1.24 capture 2.683 276 ------------------------------------------------------- (*) In the energy range from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections Cross sections above the resolved resonance region except for the elastic scattering (MT=2), fission cross (MT=18, 19, 20, 21, 38) and capture cross sections were calculated with CCONE code/33/. Model parameters for CCONE code were determined by considering experimental data of total and (n,2n) cross sections, and fission and capture cross sections of JENDL-3.3. OMPs were based on those of Kunieda et al./34/, and adjusted to the total cross section. The model parameters were further adjusted by considering integral data. MT= 1 Total cross section Below about 12 MeV, cross section was calculated with CCONE code. Above 12 MeV, a smooth cross-section curve was obtained by spline fitting to the experimental data of Abfalterer et al./35/ MT=2 Elastic scattering cross section Calculated as total - non-elastic scattering cross sections except for the 1.3-4.0MeV region where the differences among adopted fission and calculated fission were reflected in the inelastic scattering cross sections. MT=16 (n,2n) cross section Calculated with CCONE code. Following experimental data were considered for the determination of model parameters: Frehaut et al./36,37/, Kornilov et al./38/, Karius et al./39/, Raics et al./40/, Golovnya et al./41/, Konno et al./42/, Filatenkov et al./43/, Veeser et al./44/, Ryves et al./45/, Pepelnik et al./46/. The data of Frehaut et al. were multiplied by a factor of 1.1. The data of activation measurements were re-normalized by adopting a intensity of 21.2% to the 208-keV gamma-rays from Np-237. MT=18 Fission cross section Below 400 keV, JENDL-3.3/2/ was adopted. Above 400 keV, experimental data measured after 1960 were analyzed by simultaneous fitting of U-233, U-235, U-238, Pu-239, Pu-240 and Pu-241 fission cross sections and their ratio by the SOK code/5/. Covariance matrix reported in Manabe et al./47/ was also considered in the analysis. -------------------------------------------------------------- Cross section -------------------------------------------------------------- EXFOR Energy range (eV) Authors Reference -------------------------------------------------------------- 13586.011 1.00E+7 J.W.Meadows+ /48/ 22304.003 4.80E+6 - 1.88E+7 K.Merla+ /49/ 30669.002 4.00E+6 - 5.50E+6 J.X.Wu+ /50/ 20779.003 1.39E+7 - 1.46E+7 M.Cance+ /51/ 40547.007 1.48E+7 V.M.Adamov+ /52/ 40483.002 1.60E+5 - 1.55E+6 P.E.Vorotnikov+ /53/ 40081.002 2.50E+6 I.M.Kuks+ /54/ 21209.002 1.27E+7 - 1.94E+7 B.Adams+ /55/ 22565.002 1.45E+7 G,Winkler+ /56/ -------------------------------------------------------------- Ratio to U-233(n,f) cross section -------------------------------------------------------------- EXFOR Energy range (eV) Authors Reference -------------------------------------------------------------- 10422.006 1.00E+6 - 2.85E+7 J.W.Behrens+ /57/ -------------------------------------------------------------- Ratio to U-235(n,f) cross section -------------------------------------------------------------- EXFOR Energy range (eV) Authors Reference -------------------------------------------------------------- 10635.002 1.51E+5 - 2.39E+7 F.C.Difilippo+ /58/ 41455.003 5.77E+5 - 2.94E+7 O.A.Shcherbakov+ /59/ 30722.002 1.47E+7 J.W.Li+ /60/ 13134.007 1.47E+7 J.W.Meadows /61/ 40831.004 1.38E+7 - 1.48E+7 A.A.Goverdovskij+ /62/ 40831.003 5.44E+6 - 1.04E+7 A.A.Goverdovskij+ /62/ 30588.002 1.35E+7 - 1.48E+7 M.Varnagy+ /63/ 40506.002 9.81E+5 - 7.00E+6 B.I.Fursov+ /64/ 10653.004 1.44E+5 - 2.92E+7 J.W.Behrens+ /65/ 20870.002 2.65E+6 - 7.01E+6 M.Cance+ /66/ 20869.002 4.67E+6 - 8.85E+6 C.Nordborg+ /67/ 20409.002 1.37E+6 - 2.96E+7 S.Cierjacks+ /68/ 10506.002 5.33E+6 - 1.04E+7 J.W.Meadows /69/ 10504.002 1.09E+6 - 3.03E+6 J.W.Meadows /70/ 10237.003 8.99E+5 - 5.15E+6 J.W.Meadows /71/ 10232.006 2.00E+6 - 3.00E+6 W.P.Poenitz+ /72/ 22282.006 1.35E+7 - 1.49E+7 F.Manabe+ /47/ -----.--- 8.33E+5 - 2.96E+7 P.W.Lisowski+ /73/ -------------------------------------------------------------- The cross section was slightly modified in the energy region from 1 to 4 MeV and from 7 to 8 MeV. MT=19, 20, 21, 38 Multi-chance fission cross sections Calculated with CCONE code, and renormalized to the total fission cross section (MT=18). MT=102 Capture cross section Based on JENDL-3.3/2/ data which were evaluated as follows: Below 300 keV, evaluation was mainly based on the data measured by Kazakov et al./74/. Above 300 keV, data were taken from JENDL-2 which were determined mainly from the measurements by Poenitz/75/, Panitkin and Sherman/76/, Moxon/77/, Fricke et al./78/ and Menlove and Poenitz/79/. Above 1 MeV, statistical model calculation was made, and direct and semi-direct capture cross section was calculated with DSD code/80/. They were slightly modified by considering integral data. MF= 4 Angular distributions of secondary neutrons MT=2 Elastic scattering Calculated with CCONE code. MT=18 Fission Isotropic distributions in the laboratory system were assumed. MF=5 Energy Distributions of Secondary Neutrons MT=18 Prompt fission neutrons Below 5 MeV, data of JENDL-3.3/2/ were adopted. Comment of JENDL-3.3: * Distributions were calculated with the modified Madland-Nix model/81,82/. The compound nucleus formation cross sections for fission fragments (FF) were calculated using Bechetti-Greenlees potential/83/. Up to 3rd-chance-fission were considered at high incident neutron energies. Parameters adopted: Total average FF kinetic energy = 167.41 - 172.65 MeV Average energy release = 186.115 - 186.364 MeV Average mass number of light FF = 99 - 111 Average mass number of heavy FF = 128 - 140 Level density of the light FF = 10.106 - 10.963 Level density of the heavy FF = 11.441 - 7.811 Ratio of nuclear temperature for light to heavy FF = 1.0 Note that the parameters vary with the incident energy within the indicated range. Above 5.5 MeV, the spectra calculated with CCONE code /33/ were adopted. MT=455 Delayed neutrons (same as JENDL-3.3) Taken from Brady and England/84/. Group abundace parameters were adjusted so as to reproduce total delayed neutron emission rate measured by Keepin/6/, and East et al./85/. MF= 6 Energy-angle distributions Calculated with CCONE code. Distributions from fission (MT=18) are not included. MF=12 Photon Production Multiplicities (option 1) MT=18 Fission (same as JENDL-3.3) The thermal neutron-induced fission gamma spectrum of U-235 measured by Verbinski et al./86/ was adopted for the whole energy region. The intensity of photon below 0.14 MeV, where no data were given, was assumed to be the same as that between 0.14 and 0.3 MeV. Data were extended up to 20 MeV for JENDL-4.0. MF=14 Angular Distributions of Photons Isotropic distributions were assumed for all sections. MF=15 Continuous Photon Energy Spectra MT=18 Fission (same as JENDL-3.3) U-235 spectra measured by Verbinski et al./86/. MF=31 Covariances of average number of neutrons per fission MT=452 Number of neutrons per fission Combination of covariances for MT=455 and MT=456. MT=455 Same as JENDL-3.3/2/. MT=456 Covariance was obtained by fitting to the experimental data (see MF1,MT456). MF=33 Covariances of neutron cross sections Covariances were given to all the cross sections by using KALMAN code/89/ and the covariances of model parameters used in the theoretical calculations. For the following cross sections, covariances were determined by different methods. MT= 1, 2 Total and elastic scattering cross sections In the energy region up to 20 keV, covariances were calculated from the covariances of resonance parameters/87,88/. Above 20 keV, covariance of the CCONE calculation was adopted. MT=18 Fission cross section In the energy region up to 20 keV, covariances were calculated from the covariances of resonance parameters/87,88/. From 20 to 400 keV, uncertainty of 80% was assumed. Above 400 keV, covariance matrix was obtained by simultaneous evaluation among the fission cross sections of U-233, U-235, U-238, Pu-239, Pu-240 and Pu-241(See MF=3, MT=18, and /1/). Since the variances are very small, they were adopted by multiplying a factor of 2. MT=102 Capture cross section In the energy region up to 20 keV, covariances were calculated from the covariances of resonance parameters/87,88/. Above 20 keV, the covariance matrix was taken from JENDL-3.3. MF=34 Covariances for Angular Distributions MT=2 Elastic scattering Covariances were given only to P1 components. MF=35 Covariances for Energy Distributions MT=18 Fission spectra Below 5 MeV, based on the covarinaces given in JENDL-3.3. Above 5 MeV, estimated with CCONE and KALMAN codes. ***************************************************************** Calculation with CCONE code ***************************************************************** Models and parameters used in the CCONE/33/ calculation 1) Coupled channel optical model Levels in the rotational band were included. Optical model potential and coupled levels are shown in Table 1. 2) Two-component exciton model/90/ * Global parametrization of Koning-Duijvestijn/91/ was used. * Gamma emission channel/92/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Moldauer width fluctuation correction/93/ was included. * Neutron, gamma and fission decay channel were included. * Transmission coefficients of neutrons were taken from coupled channel calculation in Table 1. * The level scheme of the target is shown in Table 2. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction and collective enhancement factor. Parameters are shown in Table 3. * Fission channel: Double humped fission barriers were assumed. Fission barrier penetrabilities were calculated with Hill-Wheler formula/94/. Fission barrier parameters were shown in Table 4. Transition state model was used and continuum levels are assumed above the saddles. The level density parameters for inner and outer saddles are shown in Tables 5 and 6, respectively. * Gamma-ray strength function of Kopecky et al/95/,/96/ was used. The prameters are shown in Table 7. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Coupled channel calculation -------------------------------------------------- * rigid rotor model was applied * coupled levels = 0,1,2,3,4,7 (see Table 2) * optical potential parameters /97/ Real: VRO = -42.0786 MeV VR1 = 0.027 VR2 = 0.00012 1/MeV VR3 = 3.5e-07 1/MeV^2 VRLA = 96.2445 MeV ALAVR = 0.00386032 1/MeV Imaginary-surface: WD0 = 0 MeV WD1 = 0 WDA1 = 0 WDBW = 14.5489 MeV WDWID = 12.0143 MeV ALAWD = 0.013353 1/MeV Imaginary-volume: WC0 = 0 MeV WC1 = 0 WCA1 = 0 WCBW = 17 MeV WCWID = 105 MeV BNDC = 0 MeV Spin-orbit: VS = 6.634 MeV ALASO = 0.005 1/MeV WSO = 0 MeV WS1 = 0 WSBW = -3.1 MeV WSWID = 160 MeV Radius and diffuseness: RR = 1.23906 fm RRBWC = 0 fm RRWID = 0 MeV PDIS = 2 AR0 = 0.650409 fm AR1 = 0 fm RD = 1.21933 fm AD0 = 0.66086 fm AD1 = 0 fm/MeV RC = 1.21 fm AC0 = 0.685 fm AC1 = 0 fm/MeV RW = 0 fm AW0 = 0 fm AW1 = 0 fm/MeV RS = 1.0751 fm AS0 = 0.59 fm AS1 = 0 fm/MeV RZ = 1.264 fm RZBWC = 0 fm RRWID = 0 MeV AZ = 0.341 fm CCOUL = 0.9 MeV ALF = 0 Coulomb correction: CISO = 24.3 MeV WCISO = 18 MeV Deformation: beta_2 = 0.223632 beta_4 = 0.09 beta_6 = -0.0031 * Calculated strength function S0= 1.10e-4 S1= 1.81e-4 R'= 9.48 fm (En=1 keV) -------------------------------------------------- Table 2. Level Scheme of U-238 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 0 + * 1 0.04492 2 + * 2 0.14838 4 + * 3 0.30718 6 + * 4 0.51810 8 + * 5 0.68011 1 - 6 0.73193 3 - 7 0.77590 10 + * 8 0.82664 5 - 9 0.92721 0 + 10 0.93055 1 - 11 0.95012 2 - 12 0.96613 2 + 13 0.96631 7 - 14 0.99723 0 + 15 0.99758 3 - 16 1.02800 4 - 17 1.03725 2 + 18 1.05638 4 + 19 1.05773 3 + 20 1.05966 3 + 21 1.06027 2 + 22 1.07670 12 + 23 1.10571 3 + 24 1.12884 2 - 25 1.13075 4 + 26 1.13570 7 - 27 1.15070 9 - ------------------- *) Coupled levels in CC calculation Table 3. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- U-239 17.1586 0.7762 3.0776 0.3946 -0.8805 3.0192 U-238 19.7315 1.5557 3.0121 0.3609 -0.0539 3.7504 U-237 18.2087 0.7795 2.7455 0.3666 -0.6759 2.7868 U-236 20.1615 1.5623 2.7551 0.3852 -0.3630 4.1437 U-235 18.5328 0.7828 2.6265 0.3874 -0.9246 3.1046 -------------------------------------------------------- Table 4. Fission barrier parameters ---------------------------------------- Nuclide V_A hw_A V_B hw_B MeV MeV MeV MeV ---------------------------------------- U-239 6.452 0.702 5.574 0.474 U-238 6.331 0.950 4.952 0.600 U-237 6.036 0.650 5.641 0.500 U-236 6.220 1.040 5.034 0.550 U-235 5.790 0.400 5.470 0.300 ---------------------------------------- Table 5. Level density above inner saddle -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- U-239 20.6471 0.9056 2.6000 0.3418 -1.7200 3.1056 U-238 20.5728 1.8150 2.6000 0.3324 -0.6607 3.8750 U-237 20.4984 0.9094 2.6000 0.3286 -1.5020 2.9094 U-236 20.4241 1.8226 2.6000 0.3293 -0.5887 3.8226 U-235 20.3497 0.9133 2.6000 0.3299 -1.4981 2.9133 -------------------------------------------------------- Table 6. Level density above outer saddle -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- U-239 22.3136 0.9056 0.2600 0.3564 -0.8646 3.0056 U-238 20.2054 1.8150 0.2200 0.4201 -0.4806 4.5150 U-237 21.5966 0.9094 0.1800 0.3569 -0.7807 2.9094 U-236 20.4241 1.8226 0.1400 0.3693 0.1220 3.8226 U-235 20.3497 0.9133 0.1000 0.3706 -0.7868 2.9133 -------------------------------------------------------- Table 7. Gamma-ray strength function for U-239 -------------------------------------------------------- K0 = 2.946 E0 = 4.500 (MeV) * E1: ER = 10.90 (MeV) EG = 2.50 (MeV) SIG = 300.00 (mb) ER = 13.80 (MeV) EG = 4.70 (MeV) SIG = 450.00 (mb) * M1: ER = 6.61 (MeV) EG = 4.00 (MeV) SIG = 4.47 (mb) * E2: ER = 10.15 (MeV) EG = 3.24 (MeV) SIG = 6.50 (mb) -------------------------------------------------------- References 1) O.Iwamoto et al.: J. Nucl. Sci. Technol., 46, 510 (2009). 2) T.Kawano et al.: JAERI-Research 2003-026 (2003). 3) M.S.Krick, A.E.Evans: Nucl. Sci. Eng., 47, 311 (1972). 4) J.W.Meadows: ANL-NDM-18 (1976). 5) T.Kawano et al.: JAERI-Research 2000-004 (2000) 6) G.R.Keepin et al.: Phy. Rev., 107, 1044 (1957). 7) D.Butler et al : 1961 Vienna, p.125 (1961). 8) H.Conde, N.Starfelt: Nucl. Sci. Eng., 11, 397 (1961). 9) I.Asplund-Nilsson et al.: Nucl. Sci. Eng., 20, 527 (1964). 10) D.S.Mather et al.: Nucl. Phys., 66, 149 (1965). 11) V.G.Vorob'jova et al.: YK-15, 3 (1974). 12) Z.Bao et al.: At. Energy Sci. Technol., 9, 362 (1975). 13) B.Nurpeisov et al.: Sov. At. Energy, 39, 807 (1975). 14) J.Frehaut et al.: private communication to EXFOR (1980). 15) J.Frehaut : private communication to EXFOR (1980). 16) V.V.Malinovskij et al.: INDC(CCP)-229/L, p.46 (1984). 17) G.S.Boykov et al.: Sov. J. Nucl. Phys., 53, 392 (1991). 18) G.N.Smirenkin et al.: Phys. At. Nuclei, 59, 1865 (1996). 19) A.S.Vorobyev et al.: 2004 Santa Fe, Vol.1, p.613 (2004). 20) G.Audi: Private communication (April 2009). 21) J.Katakura et al.: JAERI 1343 (2001). 22) T.R.England et al.: LA-11151-MS (1988). 23) R.Sher, C.Beck: EPRI NP-1771 (1981). 24) M.B.Chadwick et al.: Nucl. Data Tables, 107, 2931 (2006). 25) H.Derrien et al.: Nucl. Sci. Eng., 161, 131 (2009). 26) N.M.Larson: ORNL/TM-9179/R6 (2003). 27) G.de Saussure et al.: Nucl. Sci. Eng., 51, 386 (1973). 28) D.K.Olsen et al.: Nucl. Sci. Eng., 62, 479 (1977) 29) D.K.Olsen et al.: Nucl. Sci. Eng., 69, 202 (1979). 30) R.L.Macklin et al.: 1988 Mito, p.71 (1988). 31) J.A.Harvey et al.: 1988 Mito, p.115 (1988) 32) A.Trkov et al.: Nucl. Sci. Eng., 150, 336 (2005). 33) O.Iwamoto: J. Nucl. Sci. Technol., 44, 687 (2007). 34) S.Kunieda et al.: J. Nucl. Sci. Technol., 44 (838). 35) W.P.Abfalterer et al.: Phys. Rev., C63, 044608 (2001). 36) J.Frehaut et al.: Nucl. Sci. Eng., 74, 29 (1980). 37) J.Frehaut et al.: 1980 BNL, vol.1, p.399 (1980). 38) N.V.Kornilov et al.: ZfK-410, p.68 (1980). 39) H.Karius et al.: J. Phys. G: 5, 715 (1979). 40) R.Raics et al.: 1980 Kiev, Vol. 1, p.236 (1980). 41) V.Ya.Golovnya et al.: 1987 Kiev, Vol. 3, p.281 (1987). 42) C.Konno et al.: JAERI 1329 (1993). 43) A.A.Filatenkov et al.: INDC(CCP)-402 (1997). 44) L.R.Veeser et al.: 1978 Harwell, p.185 (1978). 45) T.B.Ryves, P.Kolkowski: J. Phys. G, 6, 771 (1980). 46) R.Pepelnik et al.: 1985 Santa Fe, Vol.1, p.211 (1985). 47) F.Manabe et al.: Tech. Rept. Tohoku Univ., 52, 97 (1988). 48) J.W.Meadows et al.: Ann. Nucl. Energy, 23, 877 (1996). 49) K.Merla et al.: 1991 Juelich, p.510 (1991). 50) J.X.Wu et al.: Chin. J. Nucl. Phys., 5, 158 (1983). 51) M.Cance et al.: Nucl. Sci. Eng., 68, 197 (1978). 52) V.M.Adamov et al.: Yad. Konst., 24, 8 (1977). 53) P.E.Vorotnikov et al.: YFI-20, 9 (1975). 54) I.M.Kukus et al.: At. Energy, 30, 55 (1971). 55) B.Adams et al.: J. Nucl. Energy A/B, 14, 85 (1961). 56) G.Winkler et al.: 1991 Juelich, p.514 (1991). 57) J.W.Behrens et al.: 1976 ANL, p.47 (1976). 58) F.C.Difilippo et al.: Nucl. Sci. Eng., 68, 43 (1978). 59) O.A.Shcherbakov et al.: 2001 Dubna, p.288 (2001). 60) J.W.Li et al.: Chin. J. Nucl. Ohys., 11, 17 (1989). 61) J.W.Meadows: Ann. Nucl. Energy, 15, 421 (1988). 62) A.A.Goverdovskij et al.: At. Energy, 56, 164 (1984). 63) M.Varnagy et al.: Nucl. Instrum. Methods, 196, 465 (1982). 64) B.I.Fursov et al.: At. Energy, 43, 181 (1977). 65) J.W.Behrens et al.: Nucl. Sci. Eng., 63, 250 (1977). 66) M.Cance et al.: 1976 ANL, p.141 (1976). 67) C.Nordborg et al.: 1976 ANL, p.128 (1976). 68) S.Cierjacks et al.: 1976 ANL, p.94 (1976). 69) J.W.Meadows: Nucl. Sci. Eng., 58, 255 (1975). 70) J.W.Meadows: Private communication (1975). 71) J.W.Meadows: Nucl. Sci. Eng., 49, 310 (1972). 72) W.P.Poenitz et al.: J. Nucl. Energy, 26, 483 (1972). 73) P.W.Lisowski et al.: Private communication (2007). 74) L.E.Kazakov et al.: Yad. Konst., 3 (1986). 75) W.P.Poenitz: Nucl. Sci. Eng., 57, 300 (1975). 76) Yu.G.Panitkin, L.E.Sherman: Atomnaya Energiya, 39, 17 (1975). 77) M.C.Moxon: Private Communication to the NEA Data Bank (1971). 78) M.P.Fricke et al.: 1970 Helsinki, p.265 (1970). 79) M.O.Menlove, W.P.Poenitz: Nucl. Sci. Eng., 33, 24 (1968). 80) T.Kawano: private communication (1999). 81) D.G.Madland, J.R.Nix: Nucl. Sci. 81, 213 (1982). 82) T.Ohsawa: private communication (1992). 83) F.D.Becchetti Jr., G.W.Greenlees: Phys. Rev., 182, 1190 (1969). 84) M.C.Brady, T.R.England: Nucl. Sci. Eng., 103, 129 (1989). 85) L.V.East et al.: LA-4605-MS (1970). 86) V.V.Verbinski et al: Phys. Rev., C7, 1173 (1973). 87) H.Derrien et al.: 2004 Santa Fe, Vol.1, p.276 (2004). 88) C.Leal: private communication. 89) T.Kawano, K.Shibata, JAERI-Data/Code 97-037 (1997) in Japanese. 90) C.Kalbach: Phys. Rev. C33, 818 (1986). 91) A.J.Koning, M.C.Duijvestijn: Nucl. Phys. A744, 15 (2004). 92) J.M.Akkermans, H.Gruppelaar: Phys. Lett. 157B, 95 (1985). 93) P.A.Moldauer: Nucl. Phys. A344, 185 (1980). 94) D.L.Hill, J.A.Wheeler: Phys. Rev. 89, 1102 (1953). 95) J.Kopecky, M.Uhl: Phys. Rev. C41, 1941 (1990). 96) J.Kopecky, M.Uhl, R.E.Chrien: Phys. Rev. C47, 312 (1990). 97) E.Sh.Soukhovitskii et al.: JAERI-Data/Code 2005-002.