94-Pu-237 JAEA+ EVAL-FEB10 O.Iwamoto,T.Nakagawa+ DIST-DEC21 20100303 ----JENDL-5 MATERIAL 9431 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 07-05 Theoretical calculation was made with CCONE code. 07-10 Theoretical calculation was made with CCONE code. Data were compiled as JENDL/AC-2008/1/. 10-02 Data of prompt gamma rays due to fission were given. 10-03 Covariance data were given. 21-11 revised by O.Iwamoto (MF3/MT19-21,38) deleted (MF8/MT4,16-18,102) added MF= 1 General information MT=452 Number of Neutrons per fission Sum of MT's = 455 and 456. MT=455 Delayed neutron data (same as JENDL-3.3) Determined from the systematics of Manero and Konshin /2/. MT=456 Number of prompt neutrons per fission (same as JENDL-3.3) Determined from the data for Pu-239. MF= 2 Resonance parameters MT=151 No resolved resonance parameters Thermal cross sections and resonance integrals (at 300K) ------------------------------------------------------- 0.0253 eV reson. integ.(*) (barns) (barns) ------------------------------------------------------- total 2507.1 elastic 11.12 fission 2295.6 1230 capture 200.1 113 ------------------------------------------------------- (*) In the energy range from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections In the energy region below 0.3 eV: Elastic scattering = 11.1 b which was estimated from R=9.397 fm calculated with CCONE code/3/. Fission = 1/v shape with 2294 b /4,5/ at 0.0253 eV. Capture = 1/v shape with 200 b at 0.0253 eV. The thermal cross section was assumed from capture to fission ratio at 1 eV and thermal fission cross section. Total = sum of these three cross sections. Above 0.3 eV: All the cross sections were calculated with CCONE code/3/. MT= 1 Total cross section The cross section was calculated with CC OMP of Soukhovitskii et al./6/. MT=18 Fission cross section The simulated (n,f) cross sections of Britt and Wilhelmy/7/ were used to determine the parameters in the CCONE calculation. MF= 4 Angular distributions of secondary neutrons MT=2 Elastic scattering Calculated with CCONE code. MT=18 Fission Isotropic distributions in the laboratory system were assumed. MF= 5 Energy distributions of secondary neutrons MT=18 Prompt fission neutrons Calculated with CCONE code. MF= 6 Energy-angle distributions Calculated with CCONE code. Distributions from fission (MT=18) are not included. MF=12 Photon production multiplicities MT=18 Fission Calculated from the total energy released by the prompt gamma-rays due to fission which was estimated from its systematics, and the average energy of gamma-rays. MF=14 Photon angular distributions MT=18 Fission Isotoropic distributions were assumed. MF=15 Continuous photon energy spectra MT=18 Fission Experimental data measured by Verbinski et al./8/ for Pu-239 thermal fission were adopted. MF=31 Covariances of average number of neutrons per fission MT=452 Number of neutrons per fission Sum of covariances for MT=455 and MT=456. MT=455 Error of 15% was assumed. MT=456 Covariance was obtained by fitting a linear function to the at 0.0 and 5.0 MeV with an uncertainty of 5%. MF=33 Covariances of neutron cross sections Covariances were given to all the cross sections by using KALMAN code/9/ and the covariances of model parameters used in the cross-section calculations. Covariances of the fission cross section were determined from experimental data. For the following cross sections, standard deviations in the energy region below 0.3 eV were assumed as follows: Total 25 % Elastic scattering 50 % Fission 27 % estimated from experimental data Capture 50 % MF=34 Covariances for Angular Distributions MT=2 Elastic scattering Covariances were given only to P1 components. MF=35 Covariances for Energy Distributions MT=18 Fission spectra Estimated with CCONE and KALMAN codes. ***************************************************************** Calculation with CCONE code ***************************************************************** Models and parameters used in the CCONE/3/ calculation 1) Coupled channel optical model Levels in the rotational band were included. Optical model potential and coupled levels are shown in Table 1. 2) Two-component exciton model/10/ * Global parametrization of Koning-Duijvestijn/11/ was used. * Gamma emission channel/12/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Moldauer width fluctuation correction/13/ was included. * Neutron, gamma and fission decay channel were included. * Transmission coefficients of neutrons were taken from coupled channel calculation in Table 1. * The level scheme of the target is shown in Table 2. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction and collective enhancement factor. Parameters are shown in Table 3. * Fission channel: Double humped fission barriers were assumed. Fission barrier penetrabilities were calculated with Hill-Wheler formula/14/. Fission barrier parameters were shown in Table 4. Transition state model was used and continuum levels are assumed above the saddles. The level density parameters for inner and outer saddles are shown in Tables 5 and 6, respectively. * Gamma-ray strength function of Kopecky et al/15/,/16/ was used. The prameters are shown in Table 7. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Coupled channel calculation -------------------------------------------------- * rigid rotor model was applied * coupled levels = 0,1,2,5,8 (see Table 2) * optical potential parameters /6/ Volume: V_0 = 49.97 MeV lambda_HF = 0.01004 1/MeV C_viso = 15.9 MeV A_v = 12.04 MeV B_v = 81.36 MeV E_a = 385 MeV r_v = 1.2568 fm a_v = 0.633 fm Surface: W_0 = 17.2 MeV B_s = 11.19 MeV C_s = 0.01361 1/MeV C_wiso = 23.5 MeV r_s = 1.1803 fm a_s = 0.601 fm Spin-orbit: V_so = 5.75 MeV lambda_so = 0.005 1/MeV W_so = -3.1 MeV B_so = 160 MeV r_so = 1.1214 fm a_so = 0.59 fm Coulomb: C_coul = 1.3 r_c = 1.2452 fm a_c = 0.545 fm Deformation: beta_2 = 0.21978 beta_4 = 0.07667 beta_6 = -0.00869 * Calculated strength function S0= 1.13e-4 S1= 2.86e-4 R'= 9.40 fm (En=1 keV) -------------------------------------------------- Table 2. Level Scheme of Pu-237 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 7/2 - * 1 0.04771 9/2 - * 2 0.10600 11/2 - * 3 0.14554 1/2 + 4 0.15545 3/2 + 5 0.17500 13/2 - * 6 0.20118 5/2 + 7 0.22425 7/2 + 8 0.25700 15/2 - * 9 0.28022 5/2 + 10 0.30400 9/2 + 11 0.32097 7/2 + 12 0.37040 3/2 + 13 0.37100 9/2 + 14 0.40419 5/2 + 15 0.40783 5/2 + 16 0.43841 7/2 + 17 0.45320 7/2 + 18 0.47350 7/2 + 19 0.48600 9/2 + 20 0.51300 9/2 + 21 0.54500 1/2 - 22 0.58200 5/2 - 23 0.59100 3/2 - 24 0.65500 7/2 + 25 0.65530 5/2 - 26 0.69100 7/2 - 27 0.69620 7/2 - 28 0.71600 13/2 - 29 0.74100 11/2 - 30 0.75700 21/2 + ------------------- *) Coupled levels in CC calculation Table 3. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Pu-238 18.3685 1.5557 1.9652 0.3804 0.0287 3.6608 Pu-237 18.3022 0.7795 1.8799 0.3586 -0.5090 2.5865 Pu-236 18.2358 1.5623 1.9752 0.3737 0.1216 3.5619 Pu-235 18.1694 0.7828 1.9791 0.3502 -0.4208 2.4828 Pu-234 18.1029 1.5689 2.1707 0.3732 0.1282 3.5689 -------------------------------------------------------- Table 4. Fission barrier parameters ---------------------------------------- Nuclide V_A hw_A V_B hw_B MeV MeV MeV MeV ---------------------------------------- Pu-238 5.300 1.040 5.850 0.600 Pu-237 5.800 0.800 5.800 0.520 Pu-236 6.000 1.040 5.000 0.600 Pu-235 6.000 0.800 5.000 0.520 Pu-234 5.600 1.040 4.600 0.600 ---------------------------------------- Table 5. Level density above inner saddle -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Pu-238 22.9607 1.8150 2.6000 0.3084 -0.5296 3.8150 Pu-237 20.1324 0.9094 2.6000 0.3320 -1.5137 2.9094 Pu-236 20.0594 1.8226 2.6000 0.3326 -0.6004 3.8226 Pu-235 19.9863 0.9133 2.6000 0.3333 -1.5098 2.9133 Pu-234 19.9132 1.8304 2.6000 0.3339 -0.5927 3.8304 -------------------------------------------------------- Table 6. Level density above outer saddle -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Pu-238 23.8791 1.8150 0.3400 0.3865 -0.5375 4.6150 Pu-237 20.1324 0.9094 0.3000 0.3706 -0.7963 2.9094 Pu-236 20.0594 1.8226 0.2600 0.3719 0.1175 3.8226 Pu-235 19.9863 0.9133 0.2200 0.3732 -0.7913 2.9133 Pu-234 19.9132 1.8304 0.1800 0.3744 0.1264 3.8304 -------------------------------------------------------- Table 7. Gamma-ray strength function for Pu-238 -------------------------------------------------------- K0 = 2.000 E0 = 4.500 (MeV) * E1: ER = 10.90 (MeV) EG = 2.50 (MeV) SIG = 300.00 (mb) ER = 13.80 (MeV) EG = 4.70 (MeV) SIG = 450.00 (mb) * M1: ER = 6.62 (MeV) EG = 4.00 (MeV) SIG = 3.30 (mb) * E2: ER = 10.17 (MeV) EG = 3.25 (MeV) SIG = 6.79 (mb) -------------------------------------------------------- References 1) O.Iwamoto et al.: J. Nucl. Sci. Technol., 46, 510 (2009). 2) F. Manero, V.A. Konshin: At. Energy Review, 10, 637 (1972). 3) O.Iwamoto: J. Nucl. Sci. Technol., 44, 687 (2007). 4) J.E.Gindler et al.: Phys. Rev., 115, 1217 (1959). 5) E.K.Hulet et al.: WASH-1033, 28 (1961). 6) E.Sh.Soukhovitskii et al.: Phys. Rev. C72, 024604 (2005). 7) H.C.Britt, J.B.Wilhelmy: Nucl. Sci. Eng., 72, 222 (1979). 8) V.V.Verbinski et al.: Phys. Rev., C7, 1173 (1973). 9) T.Kawano, K.Shibata, JAERI-Data/Code 97-037 (1997) in Japanese. 10) C.Kalbach: Phys. Rev. C33, 818 (1986). 11) A.J.Koning, M.C.Duijvestijn: Nucl. Phys. A744, 15 (2004). 12) J.M.Akkermans, H.Gruppelaar: Phys. Lett. 157B, 95 (1985). 13) P.A.Moldauer: Nucl. Phys. A344, 185 (1980). 14) D.L.Hill, J.A.Wheeler: Phys. Rev. 89, 1102 (1953). 15) J.Kopecky, M.Uhl: Phys. Rev. C41, 1941 (1990). 16) J.Kopecky, M.Uhl, R.E.Chrien: Phys. Rev. C47, 312 (1990).