94-Pu-239 JAEA+ EVAL-DEC09 O.Iwamoto,N.Otuka,S.Chiba,+ DIST-DEC21 20111206 ----JENDL-5 MATERIAL 9437 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 07-03 Data were calculated with CCONE code. 07-06 Fission spectrum was revised. 07-07 Theoretical calculation was made with CCONE code. 07-08 Theoretical calculation was made with CCONE code. 07-11 Fission cross section was revised with simultaneous evaluation. 07-12 Fission cross section was revised with a new result of simultaneous evaluation. 08-01 Fission cross section and resonance parameters were revised. New CCONE calculation was adopted. 08-02 Re-calculated with CCONE code. Fission cross section and nu-p were revised. 08-03 nu-p was revised. Interpolation of (5,18) was changed. Data were compiled as JENDL/AC-2008/1/. 09-08 (MF1,MT458) was evaluated. 09-10 nu-p and fission cross section were revised. 09-12 nu-p was revised. 10-03 Covariance data were given. 11-07 Covariance data in RRR were revised. 18-08 JENDL-5a (MF2/MT151) RRP from ENDF/B-VIII.0 19-12 JENDL-5a2 20-02 JENDL-5a3 (MF1/MT456) evalution of WPEC/SG34 (En<10eV) was adopted (MF2/MT151) ENDF/B-VIII.0 was adopted (MF3/MT18) SOK-2019 was adopted (MF3/MT19,20,21,38) renormalized 20-07 (MT3/MF102) revised (10-400 keV) 20-10 JENDL-5a4 (MF3/MT18) SOK(20201009) was adopted above 10 keV (MF3/MT19,20,21,38) deleted 21-06 JENDL-5b1 (MF1/MT456) modified for energies in 0.6 eV-2 MeV (MF2/MT151) modified below 1st resonance (MF3/MT2) calculated from total and reaction cross sections (MF3/MT18) SOK(20210404) was adopted 21-07 JENDL-5b2 (MF2/MT151) adjuisted RRP below 1st and above 100 eV (MF3/MT1) sum of partial (MF3/MT2) adjusted (MF3/MT18) adjusted (MF5/MT102) adjusted 21-10 JENDL-5b3u1 (MF2/MT151) RRPs below 1st were reverted to JENDL-5a4 21-11 revised by O.Iwamoto (MF8/MT16-18,37,102) JENDL/AD-2017 adopted (MF8/MT4) added 21-11 above 20 MeV, JENDL-4.0/HE merged by O.Iwamoto 21-11 (MF6/MT5) recoil spectrum added by O.Iwamoto 21-12 (MF33/MT18) SOK covariance adopted by O.Iwamoto 21-12 (MF3/MT18) above 20 MeV SOK evaluation adoped by O.Iwamoto 21-12 (MF32/MT151) ENDF/B-VIII.0 with modification by O.Iwamoto 21-12 (MF1/MT452,456) by O.Iwamoto revise nu-p (En > 20 MeV) by a systematics (MF6/MT5) by O.Iwamoto modify multiplicity of ZAP=1 to compensate the revision of nu-p MF= 1 General information MT=452 Number of Neutrons per fission Sum of MT=455 and 456 MT=455 Delayed neutrons (same as JENDL-3.3/2/) Evaluated data by Tuttle/3/ were adopted. Decay constants were adopted from Keepin et al./4/ MT=456 Number of prompt neutrons per fission Below 20 eV: Determined from experimental data of Gwin et al./5/ reducing by 0.1%. Standard Cf-252 sf nu-p was taken to be 3.756. 40 - 500 eV: Determined from experimental data of Frehaut et al./6/, Gwin et al./7, 5/ 500 eV - 20 keV: Determined from experimental data of Gwin et al./7, 8/ Above 20 keV: Experimental data were anlyzed by the GMA code/9/ with the Chiba and Smith approach/10/ for PPP minimization. Experimental data were renormalized with nu-p of Cf-252 spontaneous fission (3.756+/-0.031) reported by Vorobyev et al./11/ if standards to derive original data were known. Experimental data sets are summarized below. r: re-normalized by nu-p(Cf-252 spon) of A.S.Vorobyev et al. -------------------------------------------------------------- EXFOR Energy range (eV) Authors Reference -------------------------------------------------------------- 30600.002 1.86E+5 - 1.44E+6 H.Q.Zhang+ /12/ r 21135.007 9.90E+5 - 4.02E+6 D.S.Mather+ /13/ r 12326.006 2.50E+5 - 1.45E+7 J.C.Hopkins+ /14/ 21696.006 1.41E+7 I.Johnstone /15/ 21685.004 2.28E+7 - 2.83E+7 J.Frehaut /16/ 13101.004 5.50E+2 - 9.50E+6 R.Gwin+ /8/ 10759.004 5.60E+2 - 6.80E+6 R.Gwin+ /7/ 20453.003 5.50E+5 - 8.50E+5 D.S.Mather+ /17/ 20453.002 7.75E+4 - 1.15E+6 D.S.Mather+ /17/ -------------------------------------------------------------- Slight modification was made for JENDL-4.0 in the energy range from 1 keV to 4 MeV. MT=458 Components of energy release due to fission Total energy and prompt energy were calculated from mass balance using JENDL-4 fission yields data and mass excess evaluation. Mass excess values were from Audi's 2009 evaluation/18/. Delayed energy values were calculated from the energy release for infinite irradiation using JENDL FP Decay Data File 2000 and JENDL-4 yields data. For delayed neutron energy, as the JENDL FP Decay Data File 2000/19/ does not include average neutron energy values, the average values were calculated using the formula shown in the report by T.R. England/20/. The fractions of prompt energy were calculated using the fractions of Sher's evaluation/21/ when they were provided. When the fractions were not given by Sher, averaged fractions were used. MF= 2 Resonance parameters MT=151 Resolved resonance parameters (RM: below 2.5 keV) Parameters were evaluated by Derrien/22/. Unresolved resonance parameters (2.5 keV - 30 keV) The energy dependent S0, S1 and fission width were determined with ASREP code/23/ so as to reproduce the evaluated total, capture and fission cross sections. The parameters are used only for self-shielding calculations. Thermal cross sections and resonance integrals (at 300K) ------------------------------------------------------- 0.0253 eV reson. integ.(*) (barns) (barns) ------------------------------------------------------- total 1027.40 elastic 8.82 fission 742.76 301 capture 275.82 180 ------------------------------------------------------- (*) In the energy range from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections Cross sections above the resolved resonance region except for the elastic scattering (MT=2) and fission cross sections (MT=18, 19, 20, 21, 38) were calculated with CCONE code/24/. The model parameters were determined by considering integral data as well as measured total, (n,2n) and capture cross sections, and fission cross section of JENDL-3.3. MT= 1 Total cross section The cross section was calculated with CC OMP of Soukhovitskii et al./25/ The OMPs were modified based on the experimental data of Harvey et al./26/ and Poenitz et al./27,28/ MT=2 Elastic scattering cross section Calculated as total - non-elstic scattering cross sections MT=16 (n,2n) cross section Calculated with CCONE code. The experimental data of Becker et al./29/ and Lougheed et al./30/ were used to determine the model parameters in the CCONE calculation. MT=18 Fission cross section Below 10 keV, JENDL-3.3/2/ was adopted, which was based on measurements of ref./31/ and ref./32/. Above, 10 keV, experimental data measured after 1960 were analyzed in the present work by simultaneous fitting of U- 233, U-235, U-238, Pu-239, Pu-240 and Pu-241 fission cross sections and their ratios by the SOK code /33/. -------------------------------------------------------------- Cross section -------------------------------------------------------------- EXFOR Energy range (eV) Authors Reference -------------------------------------------------------------- 22304.009 1.47E+7 K.Merla+ /34/ 22304.005 4.90E+6 - 1.88E+7 K.Merla+ /34/ 12877.005 5.05E+3 - 2.05E+5 L.W.Weston+ /35/ 30670.002 1.00E+6 - 5.60E+6 X.J.Zhou+ /36/ 30634.003 1.47E+7 J.W.Li+ /37/ 12826.003 1.46E+7 M.Mahdavi+ /38/ 40487.003 5.50E+3 - 9.50E+4 Ju.V.Rjabov /39/ 20779.005 1.39E+7 - 1.46E+7 M.Cance+ /40/ 10314.003 1.40E+5 - 9.64E+5 M.C.Davis+ /41/ 20618.003 2.35E+6 - 5.53E+6 I.Szabo+ /42/ 20570.003 8.05E+5 - 2.61E+6 I.Szabo+ /42/ 20567.003 3.50E+4 - 9.72E+5 I.Szabo+ /42/ 20001.002 5.05E+3 - 3.05E+4 J.Blons /43/ 20002.002 5.05E+3 - 2.95E+4 B.H.Patrick+ /44/ 10267.002 5.50E+3 - 1.50E+5 R.Gwin+ /45/ 40927.006 1.92E+6 I.D.Alkhazov+ /46/ -------------------------------------------------------------- Ratio to U-235(n,f) cross section -------------------------------------------------------------- EXFOR Energy range (eV) Authors Reference -------------------------------------------------------------- 41455.005 5.77E+5 - 2.94E+7 O.A.Shcherbakov+ /47/ 13801.002 8.50E+5 - 2.95E+7 P.Staples+ /48/ 13134.009 1.47E+7 J.W.Meadows /49/ 30588.005 1.35E+7 - 1.48E+7 M.Varnagy+ /50/ 10562.002 5.00E+3 - 2.96E+7 G.W.Carlson+ /51/ 40824.003 2.40E+4 - 7.40E+6 B.I.Fursov+ /52/ 40824.002 3.20E+5 - 7.00E+6 B.I.Fursov+ /52/ 20569.004 1.15E+4 - 1.99E+5 I.Szabo+ /42/ 20409.003 3.92E+5 - 2.09E+7 S.Cierjacks+ /53/ 20428.004 5.50E+3 - 9.50E+5 D.B.Gayther /54/ 10253.002 3.00E+4 - 5.49E+6 W.P.Poenitz /55/ 20363.003 5.20E+3 - 1.01E+6 E.Pfletschinger+ /56/ 10086.004 1.50E+5 - 1.40E+6 W.P.Poenitz /57/ -----.--- 5.00E+5 - 2.96E+7 P.W.Lisowski+ /58/ -------------------------------------------------------------- Thus obtained fission cross section was further modified by multiplying a factor of 1.003 in the energy range from 2.5 keV to 5 MeV. The data in the 7-8 MeV region were also modified. MT=19, 20, 21, 38 Multi-chance fission cross sections Calculated with CCONE code, and renormalized to the total fission cross section (MT=18). MT=102 Capture cross section Calculated with CCONE code. The experimental data of Schomberg et al./59/, Chelnokov et al./60/, Gwin et al./45/, Kononov et al./61/ and Hopkins and Diven/62/ were used to determine the model parameters in the CCONE calculation. MF= 4 Angular distributions of secondary neutrons MT=2 Elastic scattering Calculated with CCONE code. MT=18 Fission Isotropic distributions in the laboratory system were assumed. MF=5 Energy distributions of secondary neutrons MT=18 Prompt fission neutrons Below 5 MeV, data of JENDL-3.3/2/ were adopted. Comment of JENDL-3.3: * Distributions were calculated with a modified Madland-Nix model with consideration for multimodal nature of the fission process/63,64/. The compound nucleus formation cross sections for fission fragments were calculated using Becchetti-Greenlees potential/65/. Up to 3rd-chance-fission were considered at high incident neutron energies. Parameters adopted for thermal-neutron fission/64/: (S1: standard-1, S2: standard-2, S3: standard-3 modes) total average fragment kinetic energy = 190.4 MeV for S1 = 174.2 MeV for S2 = 164.2 MeV for S3 average energy release = 205.400 MeV for S1 = 196.279 MeV for S2 = 182.123 MeV for S3 average mass number of light FF = 105 for S1 = 99 for S2 = 83 for s3 average mass number of heavy FF = 135 for S1 = 141 for S2 = 157 for s3 level density of the light FF = 11.236(S1), 10.764(S2), 6.669(S3) level density of the heavy FF = 9.577(S1), 13.104(S1),16.284(S3) mode branching ratio = 0.248(S1), 0.742(S2), 0.01(S3) These data are essentially based on Schillebeeckx et al./66/. Note that the parameters vary with the incident energy. Energy-dependent mode branching ratio data of Brosa et al./67/ was used. Above 5.5 MeV, spectra were calculated with CCONE code/24/. MT=455 (same as JENDL-3.3) Taken from Brady and England /68/. Group abundance parameters were adjusted so as to reproduce total delayed neutron emission rate measured by Keepin et al./4/, Besant et al. /69/ and Maksyutenko/70/ MF= 6 Energy-angle distributions Calculated with CCONE code. Distributions from fission (MT=18) are not included. MF=12 Photon production multiplicities and transition probability arrays MT=18 Fission (same as JENDL-3.3) Stored under option-1 (multiplicities). The thermal neutron induced fission gamma spectrum measured by Verbinski et al./71/ was adopted and used up to 20 MeV neutron. Since no data were given for the photons below 0.14 MeV, it was assumed to be the same as that of the photons between 0.14 and 0.3 MeV. MF=14 Photon angular distributions MT=18 Isotropic distributions were assumed. MF=15 Continuous photon energy spectra MT=18 (same as JENDL-3.3) Experimental data by Verbinski et al./71/ were adopted. MF=31 Covariances of average number of neutrons per fission MT=452 Number of neutrons per fission Combination of covariances for MT=455 and MT=456. MT=455 Number of delayed neutrons per fission (same as JENDL-3.3/2/) MT=456 Number of prompt neutrons per fission Below 500 eV, the same covariance as JENDL-3.3 was adopted. Above 500 eV, covariance was obtained by GMA fitting to the experimental data of nu-p (see MF=1,MT=456). MF=33 Covariances of neutron cross sections Covariances were given to all the cross sections by using KALMAN code/72/ and the covariances of model parameters used in the theoretical calculations. For the following cross sections, covariances were determined by different methods. MT=1, 2 Total and elastic scattering In the energy region up to 2.5 keV, covariances were calculated from the covariances of resonance parameters/73/. Above 2.5 keV, the covariances for CCONE calculation were adopted. MT=18 Fission cross section In the energy region up to 2.5 keV, covariances were calculated from the covariances of resonance parameters/73/. Below 2.0 keV, covariances were calculated from the covariances of resonance parameters/73/. From 2.5 to 9 keV, uncertaintes were assumed to be 2.5%. Above 9 keV, covariance matrix was obtained by simultaneous evaluation among the fission cross sections of U-233, U-235, U-238, Pu-239, Pu-240 and Pu-241(See MF=3, MT=18, and /1/). Since the variances are very small, they were adopted by multiplying a factor of 2. MT=102 Capture cross section Below 2.5 keV, covariances were calculated from the covariances of resonance parameters/73/. Above 2.5 keV, covariances were obtained with CCONE and KALMAN codes/72/. MF=34 Covariances for Angular Distributions MT=2 Elastic scattering Covariances were given only to P1 components. MF=35 Covariances for Energy Distributions MT=18 Fission spectra Below 5 MeV, based on the JENDL-3.3 data. Above 5 MeV, covariances were estimated with CCONE and KALMAN codes. ***************************************************************** Calculation with CCONE code ***************************************************************** Models and parameters used in the CCONE/24/ calculation 1) Coupled channel optical model Levels in the rotational band were included. Optical model potential and coupled levels are shown in Table 1. 2) Two-component exciton model/74/ * Global parametrization of Koning-Duijvestijn/75/ was used. * Gamma emission channel/76/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Moldauer width fluctuation correction/77/ was included. * Neutron, gamma and fission decay channel were included. * Transmission coefficients of neutrons were taken from coupled channel calculation in Table 1. * The level scheme of the target is shown in Table 2. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction and collective enhancement factor. Parameters are shown in Table 3. * Fission channel: Double humped fission barriers were assumed. Fission barrier penetrabilities were calculated with Hill-Wheler formula/78/. Fission barrier parameters were shown in Table 4. Transition state model was used and continuum levels are assumed above the saddles. The level density parameters for inner and outer saddles are shown in Tables 5 and 6, respectively. * Gamma-ray strength function of Kopecky et al/79/,/80/ was used. The prameters are shown in Table 7. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Coupled channel calculation -------------------------------------------------- * rigid rotor model was applied * coupled levels = 0,1,2,3,4,5,7,9 (see Table 2) * optical potential parameters /25/ Volume: V_0 = 50.054 MeV lambda_HF = 0.01004 1/MeV C_viso = 15.9 MeV A_v = 12.04 MeV B_v = 81.36 MeV E_a = 385 MeV r_v = 1.2568 fm a_v = 0.633 fm Surface: W_0 = 17.1463 MeV B_s = 11.19 MeV C_s = 0.01361 1/MeV C_wiso = 23.5 MeV r_s = 1.1803 fm a_s = 0.601 fm Spin-orbit: V_so = 5.75 MeV lambda_so = 0.005 1/MeV W_so = -3.1 MeV B_so = 160 MeV r_so = 1.1214 fm a_so = 0.59 fm Coulomb: C_coul = 1.3 r_c = 1.2452 fm a_c = 0.545 fm Deformation: beta_2 = 0.227635 beta_4 = 0.06501 beta_6 = -0.01837 * Calculated strength function S0= 1.09e-4 S1= 2.54e-4 R'= 9.31 fm (En=1 keV) -------------------------------------------------- Table 2. Level Scheme of Pu-239 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 1/2 + * 1 0.00786 3/2 + * 2 0.05727 5/2 + * 3 0.07570 7/2 + * 4 0.16376 9/2 + * 5 0.19280 11/2 + * 6 0.28546 5/2 + 7 0.31850 13/2 + * 8 0.33012 7/2 + 9 0.35810 15/2 + * 10 0.38742 9/2 + 11 0.39158 7/2 - 12 0.43400 9/2 - 13 0.46200 11/2 + 14 0.46980 1/2 - 15 0.48700 11/2 - 16 0.49210 3/2 - 17 0.50560 5/2 - 18 0.51184 7/2 + 19 0.51930 17/2 + 20 0.53800 7/2 + 21 0.55620 7/2 - 22 0.56500 9/2 + 23 0.57060 19/2 + 24 0.58300 9/2 - 25 0.62000 15/2 - 26 0.63400 11/2 + 27 0.66110 11/2 - 28 0.71600 13/2 - 29 0.75250 1/2 + 30 0.75600 11/2 - ------------------- *) Coupled levels in CC calculation Table 3. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Pu-240 18.5472 1.5492 2.1440 0.3862 -0.0888 3.7864 Pu-239 18.4808 0.7762 1.8503 0.3551 -0.4969 2.5616 Pu-238 18.4143 1.5557 1.9652 0.3796 0.0313 3.6576 Pu-237 18.3478 0.7795 1.8799 0.3578 -0.5058 2.5825 Pu-236 18.2812 1.5623 1.9752 0.3731 0.1229 3.5604 -------------------------------------------------------- Table 4. Fission barrier parameters ---------------------------------------- Nuclide V_A hw_A V_B hw_B MeV MeV MeV MeV ---------------------------------------- Pu-240 6.250 1.040 5.000 0.600 Pu-239 5.750 0.700 5.550 0.600 Pu-238 5.400 0.700 5.100 0.600 Pu-237 5.800 0.800 5.800 0.520 Pu-236 6.000 1.040 5.000 0.600 ---------------------------------------- Table 5. Level density above inner saddle -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Pu-240 20.3513 1.8074 2.6000 0.3517 -0.9375 4.1074 Pu-239 20.2784 0.9056 2.6000 0.3523 -1.8394 3.2056 Pu-238 20.2054 1.8150 2.6000 0.3313 -0.6081 3.8150 Pu-237 20.1324 0.9094 2.6000 0.3320 -1.5137 2.9094 Pu-236 20.0594 1.8226 2.6000 0.3326 -0.6004 3.8226 -------------------------------------------------------- Table 6. Level density above outer saddle -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Pu-240 20.9063 1.8074 0.4200 0.3827 -0.1468 4.1074 Pu-239 19.7253 0.9056 0.3800 0.3818 -0.8914 3.0056 Pu-238 19.2870 1.8150 0.3400 0.3797 0.0977 3.8150 Pu-237 20.1324 0.9094 0.3000 0.3706 -0.7963 2.9094 Pu-236 20.0594 1.8226 0.2600 0.3719 0.1175 3.8226 -------------------------------------------------------- Table 7. Gamma-ray strength function for Pu-240 -------------------------------------------------------- K0 = 2.000 E0 = 4.500 (MeV) * E1: ER = 10.90 (MeV) EG = 2.50 (MeV) SIG = 303.06 (mb) ER = 13.80 (MeV) EG = 4.70 (MeV) SIG = 450.00 (mb) * M1: ER = 6.60 (MeV) EG = 4.00 (MeV) SIG = 3.31 (mb) * E2: ER = 10.14 (MeV) EG = 3.23 (MeV) SIG = 6.79 (mb) -------------------------------------------------------- References 1) O.Iwamoto et al.: J. Nucl. Sci. Technol., 46, 510 (2009). 2) T.Kawano et al.: JAERI-Research 2003-026 (2003). 3) R.J.Tuttld: INDC(NDS)-107/G+special, p.29 (1979). 4) G.R.Keepin et al.: Phys. Rev., 107, 1044 (1957). 5) R.Gwin et al.: Nucl. Sci. Eng., 87, 381 (1984). 6) J.Frehaut: 1973 Rochester, vol.2, p.201 (1973). 7) R.Gwin et al.: ORNL-TM-6246 (1978). 8) R.Gwin et al.: Nucl. Sci. Eng., 94, 365 (1986). 9) W.P.Poenitz: BNL-NCS-51363, Vol.I, p.249 (1981). 10) S.Chiba, D.L.Smith: ANL/NDM-121 (1991). 11) A.S.Vorobyev et al., 2004 Santa Fe, Vol.1, p.613 (2004). 12) H.Q.Zhao et al.: Chin. J. Nucl. Phys., 2, 29 (1980). 13) D.S.Mather et al.: Nucl. Phys., 66, 149 (1965). 14) J.C.Hopkins et al.: Nucl. Phys., 48, 433 (1963). 15) I.Johnstond: AERE-NP/R-1912 (1956). 16) J.Frehaut: Private communication (1980). 17) D.S.Mather et al.: AWRE-O-42/70 (1970). 18) G.Audi: Private communication (April 2009). 19) J.Katakura et al.: JAERI 1343 (2001). 20) T.R.England et al.: LA-11151-MS (1988). 21) R.Sher, C.Beck: EPRI NP-1771 (1981). 22) H.Derrien et al.: 2007 Nice, AID#374 (2007). 23) Y.Kikuchi et al.: JAERI-Data/Code 99-025 (1999) in Japanese. 24) O.Iwamoto: J. Nucl. Sci. Technol., 44, 687 (2007). 25) E.Sh.Soukhovitskii et al.: Phys. Rev. C72, 024604 (2005). 26) J.A.Harvey et al.: 1988 Mito, p.115 (1988). 27) W.P.Poenitz, J.F.Whalen: ANL-NDM-80 (1983). 28) W.P.Poenitz et al.: Nucl. Sci. Eng. 78, 333 (1981). 29) J.A.Becker et al.: 2001 Tsukuba, vol.1, p.620 (2001). 30) R.W.Lougheed et al.: Radiochim. Acta, 90, 833 (2002). 31) D.Gayther: 1975 Washington, Vol.2, p.560 (1975). 32) C.Wagemans et al.: Ann. Nucl. Energy, 7, 495 (1980). 33) T.Kawano et al.: JAERI-Research 2000-004 (2000). 34) K.Merla et al.: 1991 Juelich, p.510 (1991). 35) L.W.Weston et al.,: Nucl. Sci. Eng., 88, 567 (1984). 36) Chin: J. Nucl. Phys., 4, 131 (1982). 37) J.W.Li et al.: 1982 Antwerp, p.55 (1982). 38) M.Mahdavi et al.: 1982 Antwerp, p.58 (1982). 39) Ju. V. Rjabov et al.: At. Energy, 46, 154 (1979). 40) M.Cance et al.: Nucl. Sci. Eng., 68, 197 (1978). 41) M.C.Davis et al.: Ann. Nucl. Energy, 5, 569 (1978). 42) I.Szabo et al.: 1976 ANL, p.208 (1976). 43) J.Blons: Nucl. Sci. Eng., 51, 130 (1973). 44) B.H.Patric et al.: EANDC(UK)-96 (1968). 45) R.Gwin et al.: Nucl. Sci. Eng., 59, 79 (1976). 46) I.D.Alkhazov et al.: Yad. Konst., 1986, 19 (1986). 47) O.A.Shcherbakov et al.: 2001 Dubna, p.288 (2001). 48) P.Staples et al.: Nucl. Sci. Eng., 129, 149 (1998). 49) J.W.Meadows: Ann. Nucl. Energy, 15, 421 (1988). 50) M.Varnagy et al.: Nucl. Instrum. Methods, 196, 465 (1982). 51) G.W.Carlson et al.: Nucl. Sci. Eng., 66, 205 (1978). 52) B.I.Fursov et al.: At. Energy, 43, 261 (1977). 53) S.Cierjacks et al.: 1976 ANL, p.94 (1976). 54) D.B.Gayther: 1975 Washington, Vol.2, p.564 (1975). 55) W.P.Poenitz: Nucl. Sci. Eng., 47, 228 (1972). 56) E.Pfletschinger et al.: Nucl. Sci. Eng., 40, 375 (1970). 57) W.P.Poenitz: Nucl. Sci. Eng., 40, 383 (1970). 58) P.W.Lisowski et al.: Private communication (2007). 59) M.G.Schomberg et al.: 1970 Helsinki, Vol.1, p.315 (1970). 60) V.B.Chelnokov et al.: Yaderno-Fizicheskie Issledovaniya Reports No.13, p.6 (1972). 61) V.N.Kononov et al.: Atomnaya Energiya, 38, 82 (1975). 62) J.C.Hopkins, B.C.Diven: Nucl. Sci. Eng., 12, 169 (1962). 63) D.G.Madland, J.R.Nix: Nucl. Sci. Eng., 81, 213 (1982). 64) T.Ohsawa et al.: Nucl. Phys., A665, 3 (2000). 65) F.D.Becchetti Jr., G.W.Greenlees: Phys. Rev., 182, 1190 (1969). 66) P.Schillebeeckx et al.: Nucl. Phys. A545, 623 (1992). 67) U.Brosa et al.: Phys. Rev., C59, 767 (1999). 68) M.C.Brady, T.R.England: Nucl. Sci. Eng., 103, 129 (1989). 69) C.B.Besant et al.: J. Br. Nucl. Energy Soc., 16, 161 (1977). 70) B.P.Maksyutenko: Yad. Fiz. (English Translation) 15, 848 (1963) 71) V.V.Verbinski et al.: Phys. Rev., C7, 1173 (1973). 72) T.Kawano, K.Shibata, JAERI-Data/Code 97-037 (1997) in Japanese. 73) L.C.Leal et al.: private communication. 74) C.Kalbach: Phys. Rev. C33, 818 (1986). 75) A.J.Koning, M.C.Duijvestijn: Nucl. Phys. A744, 15 (2004). 76) J.M.Akkermans, H.Gruppelaar: Phys. Lett. 157B, 95 (1985). 77) P.A.Moldauer: Nucl. Phys. A344, 185 (1980). 78) D.L.Hill, J.A.Wheeler: Phys. Rev. 89, 1102 (1953). 79) J.Kopecky, M.Uhl: Phys. Rev. C41, 1941 (1990). 80) J.Kopecky, M.Uhl, R.E.Chrien: Phys. Rev. C47, 312 (1990).