97-Bk-249 JAEA+ EVAL-FEB10 O.Iwamoto,T.Nakagawa,+ DIST-DEC21 20100323 ----JENDL-5 MATERIAL 9752 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 07-09 New calculation was made with CCONE code. Data were compiled as JENDL/AC-2008/1/. 10-02 Data of prompt gamma rays due to fission were given. 10-03 Covariance data were given. 21-11 revised by O.Iwamoto (MF3/MT19-21,38) deleted (MF8/MT16-18,37,102) JENDL/AD-2017 adopted (MF8/MT4) added MF= 1 General information MT=452 Number of Neutrons per fission Sum of MT's=455 and 456. MT=455 Delayed neutron data (Same as JENDL-3.3) Estimated from Tuttle's systematics/2/. MT=456 Number of prompt neutrons per fission (Same as JENDL-3.3) Estimated from Howerton's sytematics/3/. MF= 2 Resonance parameters MT=151 Resolved resonance parameters (MLBW: 1.0E-5 - 60 eV) (Same as JENDL-3.3) Resonance energies, neutron and radiative capture widths were taken from the experimental data of Benjamin et al./4/ For resonances whose capture width was unknown, the average value of 0.0357 eV/4/ was adopted. Fission width of 0.0002 eV was estimated from the thermal fission cross section of 4 b, which was estimated from the systematics of capture to fission ratios by Prince/5/. The parameters of a negative resonance were adjusted so as to reproduce the thermal capture cross section of 710 b/4/. Unresolved resonance parameters (60 eV - 30 keV) Parameters (URP) were determined with ASREP code/6/ so as to reproduce the cross sections in this energy region. URP are used only for self-shielding calculations. Thermal cross sections and resonance integrals (at 300K) ------------------------------------------------------- 0.0253 eV reson. integ.(*) (barns) (barns) ------------------------------------------------------- total 718.9 elastic 3.935 fission 3.97 10.1 capture 711.0 1130 ------------------------------------------------------- (*) In the energy range from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections Cross sections above the resolved resonance region were calculated with CCONE code/7/. MT= 1 Total cross section The cross section was calculated with CC OMP of Soukhovitskii et al./8/. MT=18 Fission cross section The experimental data of Silbert/9/, Fomushkin et al./10/ and Vorotnikov et al./11/ were used to determine the parameters in the CCONE calculation. MF= 4 Angular distributions of secondary neutrons MT=2 Elastic scattering Calculated with CCONE code/7/. MT=18 Fission Isotropic distributions in the laboratory system were assumed. MF= 5 Energy distributions of secondary neutrons MT=18 Prompt neutrons Calculated with CCONE code/7/. MF= 6 Energy-angle distributions Calculated with CCONE code/7/. Distributions from fission (MT=18) are not included. MF=12 Photon production multiplicities MT=18 Fission Calculated from the total energy released by the prompt gamma-rays due to fission which was estimated from its systematics, and the average energy of gamma-rays. MF=14 Photon angular distributions MT=18 Fission Isotoropic distributions were assumed. MF=15 Continuous photon energy spectra MT=18 Fission Experimental data measured by Verbinski et al./12/ for Pu-239 thermal fission were adopted. MF=31 Covariances of average number of neutrons per fission MT=452 Number of neutrons per fission Sum of covariances for MT=455 and MT=456. MT=455 Error of 15% was assumed. MT=456 Covariance was obtained by fitting a linear function to the data at 0.0 and 5.0 MeV with an uncertainty of 10%. MF=32 Covariances of resonance parameters MT=151 Resolved resonance parameterss Format of LCOMP=0 was adopted. Uncertainties of parameters were taken from Mughabghab /13/. For the parameters without any information on uncertainty, the following uncertainties were assumed: Resonance energy 0.1 % Neutron width 10 % Capture width 20 % Fission width 50 % They were further modified by considering experimental data of the capture cross section at the thermal neutron energy. MF=33 Covariances of neutron cross sections Covariances were given to all the cross sections by using KALMAN code/14/ and the covariances of model parameters used in the cross-section calculations. Covariances of the total, elastic scattering, fission and capture cross sections were determined by considering the experimental data. In the resolved resonance region, the following standard deviations were added to the contributions from resonance parameters: Elastic scattering 20 % MF=34 Covariances for Angular Distributions MT=2 Elastic scattering Covariances were given only to P1 components. MF=35 Covariances for Energy Distributions MT=18 Fission spectra Estimated with CCONE and KALMAN codes. ***************************************************************** Calculation with CCONE code ***************************************************************** Models and parameters used in the CCONE/7/ calculation 1) Coupled channel optical model Levels in the rotational band were included. Optical model potential and coupled levels are shown in Table 1. 2) Two-component exciton model/15/ * Global parametrization of Koning-Duijvestijn/16/ was used. * Gamma emission channel/17/ was added to simulate direct and semi-direct capture reaction. 3) Hauser-Feshbach statistical model * Moldauer width fluctuation correction/18/ was included. * Neutron, gamma and fission decay channel were included. * Transmission coefficients of neutrons were taken from coupled channel calculation in Table 1. * The level scheme of the target is shown in Table 2. * Level density formula of constant temperature and Fermi-gas model were used with shell energy correction and collective enhancement factor. Parameters are shown in Table 3. * Fission channel: Double humped fission barriers were assumed. Fission barrier penetrabilities were calculated with Hill-Wheler formula/19/. Fission barrier parameters were shown in Table 4. Transition state model was used and continuum levels are assumed above the saddles. The level density parameters for inner and outer saddles are shown in Tables 5 and 6, respectively. * Gamma-ray strength function of Kopecky et al/20/,/21/ was used. The prameters are shown in Table 7. ------------------------------------------------------------------ Tables ------------------------------------------------------------------ Table 1. Coupled channel calculation -------------------------------------------------- * rigid rotor model was applied * coupled levels = 0,3,5,7,9 (see Table 2) * optical potential parameters /8/ Volume: V_0 = 49.97 MeV lambda_HF = 0.01004 1/MeV C_viso = 15.9 MeV A_v = 12.04 MeV B_v = 81.36 MeV E_a = 385 MeV r_v = 1.2568 fm a_v = 0.633 fm Surface: W_0 = 17.2 MeV B_s = 11.19 MeV C_s = 0.01361 1/MeV C_wiso = 23.5 MeV r_s = 1.1803 fm a_s = 0.601 fm Spin-orbit: V_so = 5.75 MeV lambda_so = 0.005 1/MeV W_so = -3.1 MeV B_so = 160 MeV r_so = 1.1214 fm a_so = 0.59 fm Coulomb: C_coul = 1.3 r_c = 1.2452 fm a_c = 0.545 fm Deformation: beta_2 = 0.213 beta_4 = 0.066 beta_6 = 0.0015 * Calculated strength function S0= 1.35e-4 S1= 2.88e-4 R'= 9.05 fm (En=1 keV) -------------------------------------------------- Table 2. Level Scheme of Bk-249 ------------------- No. Ex(MeV) J PI ------------------- 0 0.00000 7/2 + * 1 0.00878 3/2 - 2 0.03964 5/2 - 3 0.04179 9/2 + * 4 0.08261 7/2 - 5 0.09374 11/2 + * 6 0.13773 9/2 - 7 0.15583 13/2 + * 8 0.20457 11/2 - 9 0.22925 15/2 + * 10 0.28315 13/2 - ------------------- *) Coupled levels in CC calculation Table 3. Level density parameters -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Bk-250 19.1626 0.0000 1.8225 0.3135 -0.9672 1.3776 Bk-249 19.0966 0.7605 1.6239 0.3821 -0.8440 2.9526 Bk-248 19.0305 0.0000 1.2435 0.2843 -0.6878 1.0000 Bk-247 18.9645 0.7635 1.3193 0.3836 -0.7996 2.9113 Bk-246 18.8984 0.0000 0.9401 0.2886 -0.6877 1.0000 -------------------------------------------------------- Table 4. Fission barrier parameters ---------------------------------------- Nuclide V_A hw_A V_B hw_B MeV MeV MeV MeV ---------------------------------------- Bk-250 6.200 0.650 5.550 0.450 Bk-249 6.200 0.800 4.800 0.520 Bk-248 6.200 0.650 5.550 0.450 Bk-247 6.200 0.800 4.800 0.520 Bk-246 6.200 0.650 5.550 0.450 ---------------------------------------- Table 5. Level density above inner saddle -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Bk-250 21.4621 0.0000 2.6000 0.3206 -2.4112 2.0000 Bk-249 21.3881 0.8872 2.6000 0.3212 -1.5240 2.8872 Bk-248 21.3142 0.0000 2.6000 0.3218 -2.4112 2.0000 Bk-247 21.2402 0.8908 2.6000 0.3224 -1.5204 2.8908 Bk-246 21.1662 0.0000 2.6000 0.3230 -2.4113 2.0000 -------------------------------------------------------- Table 6. Level density above outer saddle -------------------------------------------------------- Nuclide a* Pair Eshell T E0 Ematch 1/MeV MeV MeV MeV MeV MeV -------------------------------------------------------- Bk-250 21.4621 0.0000 1.0000 0.3495 -1.7100 2.0000 Bk-249 21.3881 0.8872 0.9600 0.3506 -0.8222 2.8872 Bk-248 21.3142 0.0000 0.9200 0.3517 -1.7088 2.0000 Bk-247 21.2402 0.8908 0.8800 0.3529 -0.8175 2.8908 Bk-246 21.1662 0.0000 0.8400 0.3540 -1.7077 2.0000 -------------------------------------------------------- Table 7. Gamma-ray strength function for Bk-250 -------------------------------------------------------- K0 = 1.500 E0 = 4.500 (MeV) * E1: ER = 11.37 (MeV) EG = 2.70 (MeV) SIG = 254.23 (mb) ER = 14.27 (MeV) EG = 4.17 (MeV) SIG = 508.46 (mb) * M1: ER = 6.51 (MeV) EG = 4.00 (MeV) SIG = 1.82 (mb) * E2: ER = 10.00 (MeV) EG = 3.11 (MeV) SIG = 7.20 (mb) -------------------------------------------------------- References 1) O.Iwamoto et al.: J. Nucl. Sci. Technol., 46, 510 (2009). 2) R.J.Tuttle: INDC(NDS)-107/G+Special, p.29 (1979). 3) R.J.Howerton: Nucl. Sci. Eng., 62, 438 (1977). 4) R.W.Benjamin et al.: Nucl. Sci. Eng., 85, 261 (1983). 5) A.Prince: Trans. Am. Nucl. Soc., 10, 228 (1967). 6) Y.Kikuchi et al.: JAERI-Data/Code 99-025 (1999) in Japanese. 7) O.Iwamoto: J. Nucl. Sci. Technol., 44, 687 (2007). 8) E.Sh.Soukhovitskii et al.: Phys. Rev. C72, 024604 (2005). 9) M.G.Silbert: Nucl. Sci. Eng., 63, 198 (1977). 10) E.F.Fomushkin et al.: Yadernaya Fizika, 14, 73 (1971). 11) P.E.Vorotnikov et al.: Nucl. Phys., A150, 56 (1970). 12) V.V.Verbinski et al.: Phys. Rev., C7, 1173 (1973). 13) S.F.Mughabghab: "Atlas of Neutron Resonances," Elsevier (2006). 14) T.Kawano, K.Shibata, JAERI-Data/Code 97-037 (1997) in Japanese. 15) C.Kalbach: Phys. Rev. C33, 818 (1986). 16) A.J.Koning, M.C.Duijvestijn: Nucl. Phys. A744, 15 (2004). 17) J.M.Akkermans, H.Gruppelaar: Phys. Lett. 157B, 95 (1985). 18) P.A.Moldauer: Nucl. Phys. A344, 185 (1980). 19) D.L.Hill, J.A.Wheeler: Phys. Rev. 89, 1102 (1953). 20) J.Kopecky, M.Uhl: Phys. Rev. C41, 1941 (1990). 21) J.Kopecky, M.Uhl, R.E.Chrien: Phys. Rev. C47, 312 (1990).