100-Fm-257 JAEA EVAL-Sep21 N.Iwamoto DIST-DEC21 20210920 ----JENDL-5 MATERIAL 9938 -----INCIDENT NEUTRON DATA ------ENDF-6 FORMAT History 21-10 Evaluated with CCONE code by N.Iwamoto 21-11 JENDL-5rc1 revised by N.Iwamoto (MF1/MT452,456) added (MF4,5/MT18) converted from (MF6/MT18) and added 21-12 JENDL-5rc1 revised by N.Iwamoto (MF5/MT18) corrected 21-12 (MF8/MT18) added by O.Iwamoto MF= 1 General information MT=451 Descriptive data and directory MT=452 Number of Neutrons per fission MT=456 Number of prompt neutrons per fission MF= 2 Resonance parameters MT=151 Scattering radius only AP is assumed to be 8.62 fm. Thermal cross sections and resonance integrals at 300 K ---------------------------------------------------------- 0.0253 eV res. integ. (*) (barn) (barn) ---------------------------------------------------------- Total 4.91122E+03 Elastic 9.35645E+00 Fission 2.95120E+03 6.85805E+02 n,gamma 3.00122E+00 9.37062E-01 n,alpha 1.32767E-08 4.21455E-09 ---------------------------------------------------------- (*) Integrated from 0.5 eV to 10 MeV. MF= 3 Neutron cross sections MT= 1 Total cross section Calculated with CCONE code /1/. MT= 2 Elastic scattering cross section Calculated with CCONE code /1/. MT= 4,51-91 (n,n') cross section Calculated with CCONE code /1/. MT= 5 Total reaction (except fission) cross section Calculated with CCONE code /1/. MT= 16 (n,2n) cross section Calculated with CCONE code /1/. MT= 17 (n,3n) cross section Calculated with CCONE code /1/. MT= 18 Fission cross section Calculated with CCONE code /1/. MT= 22 (n,na) cross section Calculated with CCONE code /1/. MT= 24 (n,2na) cross section Calculated with CCONE code /1/. MT= 28 (n,np) cross section Calculated with CCONE code /1/. MT= 32 (n,nd) cross section Calculated with CCONE code /1/. MT= 33 (n,nt) cross section Calculated with CCONE code /1/. MT= 37 (n,4n) cross section Calculated with CCONE code /1/. MT= 41 (n,2np) cross section Calculated with CCONE code /1/. MT=102 Capture cross section Calculated with CCONE code /1/. The thermal cross section was derived from Shibata/2/. Below 1.00 eV the 1/v cross section was assumed. MT=103,600-649 (n,p) cross section Calculated with CCONE code /1/. MT=104,650-699 (n,d) cross section Calculated with CCONE code /1/. MT=105,700-749 (n,t) cross section Calculated with CCONE code /1/. MT=106,750-799 (n,He3) cross section Calculated with CCONE code /1/. MT=107,800-849 (n,a) cross section Calculated with CCONE code /1/. MF= 4 Angular distributions of secondary particles MT= 2 Elastic scattering Calculated with CCONE code /1/. MT= 18 Fission reaction Isotropic distributions in the laboratory system were assumed. MF= 5 Energy distributions of secondary neutrons MT= 18 Prompt neutrons Calculated with CCONE code/1/. MF= 6 Energy-angle distributions of emitted particles MT= 5 Total reaction (except fission) reaction Calculated with CCONE code /1/. MT= 16 (n,2n) reaction Calculated with CCONE code /1/. MT= 17 (n,3n) reaction Calculated with CCONE code /1/. MT= 22 (n,na) reaction Calculated with CCONE code /1/. MT= 24 (n,2na) reaction Calculated with CCONE code /1/. MT= 28 (n,np) reaction Calculated with CCONE code /1/. MT= 32 (n,nd) reaction Calculated with CCONE code /1/. MT= 33 (n,nt) reaction Calculated with CCONE code /1/. MT= 37 (n,4n) reaction Calculated with CCONE code /1/. MT= 41 (n,2np) reaction Calculated with CCONE code /1/. MT= 51- 91 (n,n') reaction Calculated with CCONE code /1/. MT=102 Capture reaction Calculated with CCONE code /1/. MT=600-649 (n,p) reaction Calculated with CCONE code /1/. MT=650-699 (n,d) reaction Calculated with CCONE code /1/. MT=700-749 (n,t) reaction Calculated with CCONE code /1/. MT=750-799 (n,He3) reaction Calculated with CCONE code /1/. MT=800-849 (n,a) reaction Calculated with CCONE code /1/. MF= 8 Information on decay data MT= 4 (n,n') reaction Decay chain is given in the decay data file. MT= 5 Total reaction (except fission) reaction Decay chain is given in the decay data file. MT= 16 (n,2n) reaction Decay chain is given in the decay data file. MT= 17 (n,3n) reaction Decay chain is given in the decay data file. MT= 22 (n,na) reaction Decay chain is given in the decay data file. MT= 24 (n,2na) reaction Decay chain is given in the decay data file. MT= 28 (n,np) reaction Decay chain is given in the decay data file. MT= 32 (n,nd) reaction Decay chain is given in the decay data file. MT= 33 (n,nt) reaction Decay chain is given in the decay data file. MT= 37 (n,4n) reaction Decay chain is given in the decay data file. MT= 41 (n,2np) reaction Decay chain is given in the decay data file. MT=102 Capture reaction Decay chain is given in the decay data file. MT=103 (n,p) reaction Decay chain is given in the decay data file. MT=104 (n,d) reaction Decay chain is given in the decay data file. MT=105 (n,t) reaction Decay chain is given in the decay data file. MT=106 (n,He3) reaction Decay chain is given in the decay data file. MT=107 (n,a) reaction Decay chain is given in the decay data file. MF=10 Nuclide production reactions MT= 28 (n,np) reaction Calculated with CCONE code /1/. MT=104 (n,d) reaction Calculated with CCONE code /1/. ------------------------------------------------------------------ nuclear model calculation with CCONE code /1/ ------------------------------------------------------------------ * Optical model potentials neutron : S.Kunieda et al./3/ proton : global OMP, A.J.Koning and J.P.Delaroche/4/ deuteron: Y.Han et al./5/ triton : folding OMP, A.J.Koning and J.P.Delaroche/4/ He-3 : Y.Xu et al./6/ alpha : M.Avrigeanu and V.Avrigeanu/7/ * Level scheme of Fm-257 ----------------------- No. Ex(MeV) J PI ----------------------- 0 0.000000 9/2 + ----------------------- * Level density parameters (Gilbert-Cameron model/8/) Energy dependent parameters of Mengoni-Nakajima/9/ were used. --------------------------------------------------------- a* Pair Eshell T E0 Ematch Elv_max 1/MeV MeV MeV MeV MeV MeV MeV --------------------------------------------------------- Fm-258 28.859 1.494 2.229 0.377 0.063 4.805 0.000 Fm-257 28.765 0.749 1.920 0.380 -0.660 4.063 0.000 Fm-256 28.671 1.500 1.599 0.384 0.116 4.818 0.048 Fm-255 28.577 0.751 1.202 0.389 -0.602 4.074 0.062 Fm-254 28.483 1.506 0.855 0.393 0.181 4.832 0.045 Es-257 28.765 0.749 2.839 0.372 -0.728 4.063 0.000 Es-256 28.671 0.000 2.339 0.377 -1.441 3.318 0.100 Es-255 28.577 0.751 2.216 0.379 -0.682 4.074 0.000 Es-254 28.483 0.000 1.599 0.386 -1.386 3.326 0.080 Es-253 28.389 0.754 1.362 0.389 -0.613 4.084 0.046 Es-252 28.294 0.000 0.888 0.395 -1.329 3.334 0.092 Cf-256 28.671 1.500 3.053 0.371 0.007 4.818 0.000 Cf-255 28.577 0.751 2.728 0.375 -0.720 4.074 0.000 Cf-254 28.483 1.506 2.431 0.378 0.056 4.832 0.000 Cf-253 28.555 0.754 2.066 0.383 -0.669 4.084 0.062 Cf-252 28.294 1.512 1.740 0.387 0.113 4.846 0.046 Cf-251 28.200 0.757 1.278 0.399 -0.698 4.237 0.535 Cf-250 28.143 1.518 1.019 0.413 -0.062 5.222 1.378 Cf-249 28.012 0.760 0.766 0.412 -0.732 4.373 0.606 --------------------------------------------------------- * Gamma-ray strength functions for Fm-258 E1: hybrid model(GH)/10/ ER= 11.25 (MeV) EG= 2.65 (MeV) SIG= 265.91 (mb) ER= 14.20 (MeV) EG= 4.13 (MeV) SIG= 531.82 (mb) M1: standard lorentzian model(SLO) ER= 6.44 (MeV) EG= 4.00 (MeV) SIG= 1.62 (mb) E2: standard lorentzian model(SLO) ER= 9.90 (MeV) EG= 3.01 (MeV) SIG= 7.66 (mb) References 1) O.Iwamoto, J. Nucl. Sci. Technol., 44, 687 (2007) 2) K.Shibata, J. Nucl. Sci. Technol., 51, 425 (2014) 3) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007) 4) A.J.Koning and J.P.Delaroche, Nucl. Phys. A713, 231 (2003) 5) Y.Han et al., Phys. Rev. C 74,044615(2006) 6) Y.Xu et al., Sci. China, Phys. Mech. & Astron., 54[11], 2005 (2011) 7) M.Avrigeanu and V.Avrigeanu, Phys. Rev. C82, 014606 (2010) 8) A.Gilbert and A.G.W.Cameron, Can. J. Phys, 43, 1446 (1965) 9) A.Mengoni and Y.Nakajima, J. Nucl. Sci. Technol., 31, 151 (1994) 10) S.Goriely, Phys. Lett. B436, 10 (1998)