Study on keV-neutron capture cross sections and capture gamma-ray spectra of ^{117,119}Sn

J. NISHIYAMA^{1,*}, M. IGASHIRA¹, T. OHSAKI¹, G. KIM², W. C. CHUNG³ and T. I. RO³ ¹Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-26 O-okayama, Meguro-ku, Tokyo 152-8550, Japan

² Institute of High Energy Physics, Kyungpook National University, Daegu 702-701, Korea
³ Department of Physics, Dong-A University, Busan 604-714, Korea

The neutron capture cross sections of long-lived fission products (LLFPs) are important physical quantities for the study on the transmutation of radioactive nuclear wastes. The nuclide ¹²⁶Sn is one of the LLFPs. However, there is no experimental data for ¹²⁶Sn, because the preparation of high-purity sample is difficult and, moreover, gamma-ray radiation from a sample causes a serious background.

On the other hand, keV-neutron capture cross sections and capture gamma-ray spectra of stable Sn isotopes contain important information which is useful for the evaluation of capture cross sections of ¹²⁶Sn. Thus, we have started a systematic measurement and calculations of keV-neutron capture cross sections and capture gamma-ray spectra of stable Sn isotopes. In the present contribution, the results for ^{117, 119}Sn are shown.

The capture cross sections and capture gamma-ray spectra of ^{117, 119}Sn were measured in the incident neutron energy region from 10 to 100 keV and at 550 keV, using the 3-MV Pelletron accelerator of the Research Laboratory for Nuclear Reactors at the Tokyo Institute of Technology. Pulsed keV neutrons were produced from the ⁷Li(p,n)⁷Be reaction with a 1.5-ns bunched proton beam from the accelerator. The ^{117, 119}Sn samples were highly enriched metal plates, and the net weight of each sample was about 1 g. Capture gamma rays were detected with a large anti-Compton NaI(Tl) spectrometer by means of a time-of-flight method. A pulse-height weighting technique was applied to the observed capture gamma-ray pulse-height spectra to obtain capture yields. Using the standard capture cross sections of ¹⁹⁷Au, the capture cross sections of ^{117, 119}Sn were derived with the error of about 5%. Capture gamma-spectra were derived by unfolding the observed capture gamma-ray pulse-height spectra. The present cross section results were compared with other experimental data and the evaluated values in JENDL-3.3 and ENDF/B-VI.

The calculation of capture cross sections and capture gamma-ray spectra of ^{117, 119}Sn were performed with the EMPIRE-II code in the incident neutron energy region from 10 to 1000 keV. The calculated results were compared with the present experimental results.

^{*} Tel&Fax. +81-3-5734-3378, Email: jun-nishiyama@nr.titech.ac.jp