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A program \cmc" has been developed to calculate the multistep compound (MSC)
process by Feshbach-Kerman-Koonin. A radial overlap integral in the transition
matrix element is calculated microscopically, and comparisons are made for neutron

induced 93Nb reactions. Strengths of the two-body interaction V0 are estimated
from the total MSC cross sections.

1. Introduction

The quantum-mechanical theory of the pre-equilibrium nuclear reaction by Feshbach, Ker-
man, and Koonin[1] (FKK) has a rather simple and feasible formulation, and it has been
applied to analyses of medium and high energy nuclear reactions. The theory distinguishes
two types of the pre-equilibrium emission | the multistep direct (MSD) and the multistep

compound (MSC).
To calculate the MSC process, the original FKK assumes constant wave functions within

a nucleus because it has a great advantage to evaluate a transition matrix element easily.

Milan university group[2] adopted more realistic wave functions for a bound and an unbound
states, and they have developed a MSC code GAMME[3] which calculates the transition matrix
elements microscopically. However open questions still exist. The calculated MSC cross section
depends on an assumption of the single-particle bound states, normalization of the unbound

wave functions, and a limited number of partial waves[4].
A program \cmc" was designed to show the di�erence between the calculations with the

constant wave assumption and without it. It calculates the transition matrix element micro-
scopically too. The bound state wave function is calculated with a harmonic oscillator or a

Woods-Saxon potential, and quantum numbers of the single particle states are determined ac-
cording to the shell model. The unbound state wave function is a distorted wave by a spherical
optical potential.

2. The Overlap Integral

The MSC energy spectrum is given by[1]
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where N is the class of the pre-equilibrium states, j is the angular momentum of the emitted
particle, 2�h�1Ji=hD1Ji is the entrance strength for producing bound 2p-1h states of spin J ,

h�"�jNJ�
�(U)i is the escape width, h�#MJi is the damping width, and h�NJi is the total width. The
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escape and the damping widths are factorized by X and Y functions, h�NJi = XNJYN (E),

where the Y function contains possible phase space for the transition, and the X function
contains the possible angular momentum coupling and a radial overlap integral I(j1; j2; j3; j)
between initial and �nal states of interaction. The overlap integral with a zero-range interaction
is de�ned as

I(j1; j2; j3; j) =
4
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where uj1(r) and uj2(r) are the single particle radial wave functions for the initial states, uj3(r)
and uj(r) for the �nal states, r0 the radius parameter taken to be 1.2 fm, V0 the strength of
residual interaction.

When a Yukawa type residual interaction is taken into account[5], the overlap integral is

given by

I(j1; j2; j3; j) = V0
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where gL is calculated from the modi�ed Bessel functions[6],
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where ��1 is the range of interaction.
According to the assumption made by the FKK, the radial wave functions for the bound

and the unbound states are constant within the nuclear volume, so that

uB(r) =

r
3
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and
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where R = r0A
1=3, � is the reduced mass, k is the wave number of the emitted particle, and

Tj is the transmission coe�cient. The unbound wave function carries the single particle state
density of free particles inside the nuclear volume V = 4�R3=3,
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To calculate the overlap integral with realistic wave functions, the unbound wave function
is replaced by a distorted wave[7] normalized in unit energy,
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where Hj(r) = Gj(r)+ iFj(r) is the outgoing-wave Coulomb function, Sj the scattering matrix

element, and �` the Coulomb phase shift.
The bound wave function is calculated with a harmonic oscillator or a Woods-Saxon po-

tential. The quantum numbers and the binding energies of the bound states are determined
according to the spherical Nilsson model. These wave functions for ` = 0, 1, 2 and 3, are

shown in Fig.1. They are the radial wave functions of 2s1=2, 1p1=2, 0d5=2, and 1f7=2 states in
the Woods-Saxon potential of V = 50 MeV, Vso = 7 MeV, r = 1:2 fm, and a = 0:7 fm, and the
harmonic oscillator with �h! = 41A�1=3. Usually there are several con�gurations for a possible

transition for a given angular momentum transfer. For example, both I(s1=2; p1=2; d5=2; f7=2)
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Fig.1: Comparison of the shell model wave functions and the constant wave

and I(s1=2; p1=2; d3=2; f7=2) are possible for the case above. These overlap integrals are averaged
to give an appropriately averaged matrix element.

The overlap integrals for this con�guration are, IB=V0 = 0:0106 for the constant wave,

3:38� 10�5 for the harmonic oscillator, and 1:21� 10�5 for the Woods-Saxon potential. These
values strongly depend on a choice of the interacting particles and holes, but the averaged
values over various con�gurations are almost independent. The averaged overlap integrals are,
�IB=V0 = 5:80� 10�3 for the harmonic oscillator, and 7:07� 10�3 for the Woods-Saxon.

The constant wave function approximation generally overestimates the overlap integrals of
not only a bound/bound con�guration but also a bound/unbound con�guration. This over-

estimate cancels in the ratio of the widths h�"�jNJ�
�(U)i and h�#MJi to the total width h�NJi,

and one obtains simple estimates for the ratio regardless of details of the interaction[8]. The
approximation has an advantage for the calculation of a composite system decay rate because

it contains the ratio only, however it is invalid if one calculates the entrance strength micro-
scopically because it is proportional to the width of the 2p-1h doorway state.

3. The Entrance Strength Function

From Eq.(1), the emission and the damping probabilities can be calculated regardless to

the two-body residual interaction V0, since V0 cancels in the ratio of the emission and damping

widths to the total width. The entrance strength still holds V0 and one can estimate the
strength of V0 if the entrance strength is calculated microscopically[9],
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Fig.2: The angular momentum coupling scheme for the entrance channel. The incident particle
j is captured in the single particle orbit j1, creating the particle-hole pair j2 and j3

where the angular momentum coupling scheme is de�ned in Fig.2, !(2; 1; E) is the 2p-1h state

density at the excitation energy E, and F (Q) is the angular momentum density:
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X
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where R(j) is the spin distribution of the state.

Chadwick and Young[10] found that the entrance strength can be evaluated by the optical
model transmission coe�cients corrected by a factor RMSC = !B(2; 1; E)=!(2; 1; E), which is
the fraction of ux into the bound 2p-1h state. The entrance strength becomes

2�
h�1Ji
hD1Ji

= RMSCTJ : (11)

Figure 3 shows the calculated strengths for 14 MeV neutron-induced 93Nb reactions (mul-

tiplied by (2J + 1)�=k2 to give an initial 2p-1h state formation cross section). The distorted
wave and the transmission coe�cient are calculated with the Walter-Guss' global optical
potential[11]. The single-particle state density parameter g is taken as g = A=13 MeV�1,

and the pairing energy correction � = 0. The solid line is calculated according to the coupling
scheme in Fig.2, and the total reaction cross section is normalized to the value given by Eq.(11).
At the microscopic calculation, the particle and the hole states which obey angular momentum
and energy conservation are included. It restricts the possible �nal states, and results in small

cross sections for large J .
The initial 2p-1h state formation cross section is proportional to V 2

0 when Eq.(9) is em-
ployed, and it is possible to estimate V0 roughly if one compares the cross sections given by
Eq.(9) and those by Eq.(11). Figure 4 shows the 2p-1h state formation cross sections for

neutron-induced 93Nb reactions as functions of the incident energy. The solid line is calculated
from Eq.(9) with V0 = 10:4 MeV, and the dotted line is Eq.(11). The value of V0 was chosen
to give the same cross section at 14 MeV, and it is larger than the value of 5 MeV obtained by

Bonetti, et al.[4].
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If one assumes the constant wave for the entrance strength calculation[12], it yields large

overlap integrals as indicated in the previous section, and results in small V0. Only 450 keV of
V0 gives the same strength at 14 MeV.

The 2p-1h formation cross section with the range of 1 fm is shown in Fig.4 by the dashed
line. The e�ect of inclusion of the �nite-range correction is very large, but it can be compensated

if one adjusts V0 appropriately. The calculated cross sections are about 30% of the zero-range
results, and 19 MeV of V0 gives almost the same cross sections.

4. Conclusion

A multistep compound process calculation program \cmc" has been developed to calculate
an overlap integral microscopically. An entrance strength of the initial MSC process was

calculated for 93Nb+n(14 MeV), and it gave a rough estimation for V0 of about 10.4 MeV for
a zero-range interaction, and 19 MeV for a Yukawa interaction with the range of 1 fm.
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Fig.3: Comparison of the partial cross sections calculated from Eq.(9) and Eq.(11)
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Fig.4: Comparison of the total MSC cross sections calculated from Eq.(9) and Eq.(11)
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