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Abstract  A method of improving the Semi-Classical Distorted Wave (SCDW) model in terms of the

Wigner transform of the one-body density matrix is presented. Finite size effect of atomic nuclei can be

taken into account by using the single particle wave functions for harmonic oscillator or Wood-Saxon

potential, instead of those based on the local Fermi-gas model which were incorporated into previous

SCDW model. We carried out a preliminary SCDW calculation of 160 MeV (p,p’x) reaction on 90Zr

with the Wigner transform of harmonic oscillator wave functions. It is shown that the present

calculation of angular distributions increase remarkably at backward angles than the previous ones and

the agreement with the experimental data is improved.

  

1.  Introduction

    Dynamical nuclear processes, such as multistep direct (MSD) processes, become dominant in

nuclear reactions at intermediate energies more than several tens of MeV. The semi-classical distorted

wave (SCDW) model [1,2,3] had been proposed to describe the MSD processes and applied to analyze

(p,p’x) reactions on medium-heavy nuclei for incident energies of 65 to 200 MeV. Previous

calculations showed that this model succeeded in giving overall good agreement with the experimental

angular distributions in the intermediate angular region, but failed to reproduce them at very forward

and backward angles. Based on the consideration that the shape of MSD angular distributions is

sensitive to the momentum distribution of target nucleons[4], it is supposed that the failure is due to

the incorporation of a simple local Fermi-gas (LFG) model into SCDW model to describe the nuclear

states, rather than the semi-classical approximations made in the SCDW model.

    The LFG model can not properly take into account higher momentum components above the

Fermi momentum. In ref. [5], it was indicated that the 1-step cross section drops steeply at the very

forward and backward angles if no higher momentum component of nucleons is considered. This

situation is similar to the above-mentioned SCDW results. To take into account the higher momentum

components, one needs to use more realistic single-particle wave functions, such as that of the shell-



model potential. The Wigner transform of one body density matrix [6] is a proper tool of taking

account of such single wave functions, while the characteristic features of the SCDW model keep

unchanged, i.e., a closed formed expression in coordinate representation which allows an intuitive

interpretation of the MSD reaction. In this present work, we have reformulated the SCDW model in

terms of the Wigner transform on the basis of the discussions in ref. [4], and carried out a preliminary

calculation of 90Zr(p,p’x) angular distributions at 160 MeV by using the Wigner transform of harmonic

oscillator wave functions.

2. Formulation and methods of calculation

2.1  Wigner Transforms
     We start from the Wigner transformf ( , )k r of one-body mixed density for a j-j coupling single

particle model with the wave functions φ σn jm"
( , )x :

    f ( , )k r = f n j
n j

"
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∑ ( , )k r ,                                                      (1)

where k denotes the momentum of nucleon, r the radius, and the sum is over all single particle orbits

of target nucleons. The partial Wigner transform is
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where σ represents the spin of nucleon and ψ σ1 2/ ( )  the spin function. The radical part un j" ( )x  is

expanded in terms of Gaussian basis:
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The expansion coefficients a n j
υ
( )"  is obtained by solving the Schrödinger equation with a finite

potential, such as a harmonic oscillator (h.o.) potential or a Woods-Saxon potential through a variation

method.

    Using the above definitions, the final expression of the partial Wigner transform for a filled j-

subshell is given:
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where PL (cos )ϑ is Legendre function,ϑ represents the angle between momentum k and radius r.

j xL ( ) and i xM ( ) are spherical Bessel and modified spherical Bessel functions, respectively,

( | )λ λ λ1 20 0 0 is Clebsh -Gorden coefficient and W  the Racah coefficient.

    It should be noted that the above derivation of Wigner transform is general. The sum over orbits

in eq. (1) includes two parts, the contributions of all proton orbits and that of all neutron orbits,

respectively. In present work, however, the distinction between proton and neutron is not considered,

because the Coulomb potential for proton is neglected. In this situation the contribution of proton

orbits with the same quantum numbersn jm" as neutrons orbits is equal to that of neutron orbits.

2.2  SCDW model with Wigner transform:

    The SCDW model and its related formulae had been given in detail elsewhere [1-3]. The Wigner

transform can be incorporated into the SCDW model through the kernel K c( ) ( , ' )r r  (c denotes proton

or neutron shell) as discussed in ref. [4]:

  K c( ) ( , ' )r r ≈ 1
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where R r r= +( ' ) / 2 . The factor1 2 in eq.(8) comes from the consideration of spin of nucleon. As

a result, the expression of the local average scattering cross section contains only an additional factor

f fc c( ) ( )( , )( ( ' , ))k R k R1− which stands for the probability of the state with momentumk being

occupied and the one with k '  being unoccupied. The other quantities used in the final SCDW

expressions keep same. Thus, the present SCDW model with the Wigner transform still gives a simple

closed-form expression of cross sections as before.

3. Results and Discussions

    As an example, we calculated the Wigner transform and momentum distribution at harmonic

oscillator (h. o.) and Woods-Saxon potential for 90Zr. The number of Gaussian basis was taken as 10

which was enough to ensure the stability of Wigner transform against an increase in the number of



basis. The Clebsh-Gorden and Racah coefficients were calculated by standard subroutines. The h. o.

parameter is !ω0 =10 and the depth is -55 MeV. The Woods-Saxon potential is of global type [7].

    The calculated Wigner transforms for both potentials are shown in the three-dimensional plot in

Figs. 1 and 2. It is found that each Wigner transform varies smoothly with increasing radius r or

momentum k whenϑ  is fixed. Note that the present numerical results of Wigner transform for h. o.

potential is identical to the analytical results given in ref. [8].

    In Figs. 3 and 4, the momentum distributions n(k) = 1/ (2π)3 d fr k r∫ ( , ) for both potentials are

compared with those given by the simple Fermi-gas (FG) model, the LFG model and the QMD

calculations[5]. The momentum distributions for both potentials contain a higher momentum tail and

converge at k=0. Thus, it was found that the finite size effect of a nucleus improves remarkably the

momentum distribution given by the LFG model which is divergent at k=0 and has no higher

momentum components above the Fermi momentum. It is interesting to note that, as can be seen in

Fig.4, there appears a difference between the momentum distributions for the h.o. potential and the

Woods-Saxon potential in the high momentum region above the Fermi momentum: the former drops

steeply, but the latter includes a tail extended towards the higher momentum region.

In terms of the Wigner transform, the higher momentum component of target nucleons caused by

the finite size effect can be incorporated into the SCDW model. A preliminary calculation of angular

distributions of the 160MeV(p,p’x) reaction on 90Zr was carried out using the Wigner transform of h. o.

wave functions. The basic input physical quantities, such as the distorting potentials, the N-N

scattering cross sections, were kept same as the previous calculations [2].

Figs. 5 and 6 show comparisons of the present results with the previous calculations made with the

LFG model. The calculation with the LFG model is in overall agreement with the experimental data in

the intermediate angular region from about 30 to 60 degree, but the 1-step cross sections are almost

zero at very small angles and drops steeply at backward angles. It can be seen that the use of the h.o.

single-particle wave functions leads to remarkable increase not only in the 1-step cross section but also

in the 2- and 3-step cross section at backward angles. Although the sum underestimates the

experimental data for the lower emission energy, the result is very promising. Thus, it can be

concluded that the finite size effect is one of the reasons why the angular distributions underestimate

the experimental data at backward angles. We expect that the above calculations will be improved

further if the Woods-Saxon potential is used because the higher momentum tail is contained as shown

in Fig.4.

4.  Summary

    We have presented a method of improving the SCDW model in terms of the Wigner transform of

the one-body density matrix. The improved SCDW model was applied to the calculation for the 160

MeV (p,p’x) reaction on 90Zr. The preliminary result was very promising and indicated that the finite

size effect is important to improve the agreement with the experimental data at backward angles.



However, there still appears somewhat underestimation at backward angles. This would require us to

consider either higher order contributions above 3-step process or higher momentum components of

target nucleons. SCDW calculations using the Woods-Saxon potential are now in progress in order to

investigate the latter effect before time-consuming calculations for higher order contributions above 3-

step process are carried out. Also, we intend to investigate how the single-particle wave functions in

the surface region of nucleus affect nucleon emission to very small angles in order to give a satisfactory

explanation for the rapid fall-off of the 1-step cross section seen around zero degree.
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Fig.1  Wigner transform f (k,r) at ϑ =0          Fig.2 . Wigner transform f (k, r) at ϑ = 0

      for Woods-Saxon potential                      for h. o. potential

      



Fig.3 Momentum distribution for 90Zr, (linear)    Fig.4 Momentum distribution for 90Zr (logarithmic)

    Fig.5 Comparison of calculated angular distributions with experimental data for 90Zr(p,p’x)

reaction at an incident energy of 160 MeV and an outgoing energy of 120 MeV. The left and right ones

are calculated by SCDW model with LFG model and that with the Wigner transform for the harmonic

oscillator potential, respectively.

     Fig.6 Same as in Fig.5,but for an outgoing energy of 80 MeV
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