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Charged particle emission GRXEOH GLIIHUHQWLDO FURVV VHFWLRQV (DDXs) for Ten’s MeV neutrons
are of prime importance for accelerator applications, such as the high intensity neutron sources for material
research, accelerator cancer therapy and accelerator-based transmutation systems.

For the reason, we have continued the measurements of DDXs for (n,xZ) reactions at 40-80 MeV
mono-energetic neutron source facility in TIARA (Takasaki Establishment, JAERI) [1]. Last year, we
reported the (n,xp) and (n,xd) DDXs of Al and C at 5 angles, and compared the data with theoretical
calculation codes of  ISOBAR and GNASH [2] for the (n,xp) DDXs. The two codes agrees each other and
trace our data above the detection threshold (Ep~10MeV), but show differences in magnitude below
10MeV. Thus, marked low threshold measurements for (n,xp) reactions are desirable to validate the
calculations. In addition, � particle spectra are also needed because the (n,x�) reactions are major
components of neutron KERMA (Kinetic Energy Released in MAterials)[3] and a He accumulation effect
plays an important role in material damage.

In order to expand the measurement to lower energy protons and � particles, we have
developed a new spectrometer. In the present paper, we report the design of the spectrometer and the results
of test experiments for a low detection threshold, wide range particle identification of hydrogen and helium
Isotopes and a better signal-to-noise ratio (S/N). Thick sample correction methods now under research are
also mentioned.
  

2. Design of the New Spectrometer
2-1. wide Range Measurements

In the energy region above 20MeV, many kind of hydrogen and helium isotopes are emitted from
neutron induced reactions. Therefore, particle identification (PI) is expected to be needed over a wide



energy range from ~5MeV up to 80MeV at TIARA. For PI, the ÿE-E method is widely applied utilizing a
counter telescope which consists of a transmission detector and a stop detector. It is difficult to achieve the
PI over the wide energy range because the ÿE value of 5MeV � particles are more than 100 times as
large as that of 80MeV protons. To achieve such a wide range particle identification, we choose a ÿE1-ÿ
E2-E method, which utilizes two transmission detector ÿE1 and ÿE2, and treats the ÿE2 as the stop
detector for particles which stop in ÿE2. The schematic view of the telescope with a vacuum reaction
chamber is shown in fig. 1.

To measure ~MeV � particles, the ÿE1 detector must be thin to reduce energy loss. In the
ordinary (p,xZ)  DDX measurements, silicon surface barrier detectors (SSD) of 20~25�m thick are used
as the ÿE1 detector[4]. For (n,x�) measurements, even thinner SSDs (< 10�m)  with a large effective
area is desirable. The latter is required because the neutron flluence (1~2q104 /cm2s) at sample (20cm2)
was lower than ordinary proton experiment (1nA) by four order of magnitude. In order to reduce the energy
loss and obtain large acceptable area, we chose a low pressure gas proportional counter as theÿE1 counter.
The counter is of ordinary cylindrical shape (5.4cm long, 4.3cm in diameter) and the area of the entrance
window is 1200mm2. As the operation gas, 0.1~0.2atm Ar+5%CO2 is used in gas-flow mode. With 0.1atm
a gas pressure, the detection threshold of� particles can be low as  ~2.4MeV. The gas pressure is
automatically regulated by a mass-flow controller (STEC PCU2000 and PIEZO valve). The entrance
window of the gas counter was a 5.4�m thick mylar film which was supported by a stainless wire grid
(0.1mm in diam., 4mm spacing) to withstand a gas pressure up to ~0.4atm. As for the ÿE2 detector,  we
employ a SSD (CANBERRA PIPS) 150�m thick and 900mm2 wide, that was proved to be useful for PI of
proton and deuteron up to 75MeV[1]. As for the E detector, a BaF2 scintillator (2.2cm thick, 4cm in
diameter) are selected owing to its chemical stability requiring no entrance window and its fast timing
feature is needed to measure time of flight of particles.

Fig. 1: Schematic View of  Wide Range Telescope
2-2. Counting Efficiency and S/N

In addition to the extension in an energy range, the improvement of counting efficiency and S/N
is also considered. In order to improve the counting efficiency without deteriorating angular resolution, we
adopted multi telescope system shown in fig. 2. The three counter telescopes are set on the vacuum reaction
chamber (37cm in diameter) every 20o. The detection angles can be set 25-150owith 10osteps by
turning the chamber around sample without breaking the vacuum. In the previous work[2], the (n,xp) and
(n,xd) measurements suffered from backgrounds from nitrogen and oxygen in the air environment. Thus we
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expect the reduction of background by adopting the new vacuum chamber  ( < 5Pa). To avoid neutrons
bombardment of the chamber, an taper shaped iron collimator (80cm long, inner diameter at the exit is
5.5cm) is used to neutron collimation and neutron entrance port is 72mm in diameter. A thin aluminum
plate (2mm) was used as the entrance window. The disk-shaped sample (5cm in diam.) was located at the
center of the chamber and to be exposed to direct neutrons from the Li target.
2-3. Data Acquisition circuit

For the data acquisition, we employ the CAMAC systems to gather three sets of six parameter
data described below. The schematic view of the circuit is shown in fig. 3. Good events are chosen either
by gas-SSD coincidence or SSD-BaF2 coincidence. To simplify the circuit, two-out-of-three condition is
adopted using a majority coincidence module (Philips 755). The energy signals of BaF2 were obtained by
charge integration methods with 2�s gate. The ÿE (or E) signals from SSD and gas counter was
integrated with pre-amplifiers, and amplified, then converted into digital values by peak ADCs. The time of
flight of the charged particles are also measured at BaF2 and SSD.

To enhance PI, the SSD pulse heights were acquired with two gain: high gain is for the hydrogen
Isotope separation and low gain is for the Isotope separation.

Fig2: Multi telescope system Fig. 3: Data Acquisition System

3. Test Experiments and Results
3.1. Experiment

PI over a wide range and S/N were tested. A sheet of polyethylene, carbon and iron samples were
set at the center of the vacuum chamber and irradiated by 75MeV neutrons. Emitted charged particles
(proton, deuteron, triton 3He and �) were detected by the counter telescopes. In addition, an 241Am
calibration � source was also incorporated in the chamber to obtain to determine the energy scale of the
detector pulse heights. The pressure of the gas counter was set 0.1 atm.
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3.2. Particle Identification
In fig. 4, two dimensional spectra are shown for BaF2-SSD (high gain), BaF2-SSD (low gain) and

SSD (high gain)-Gas. In the BaF2-SSD (high gain) plot, proton , deuteron and triton spectra are clearly
separated, while He spectra are out of range of SSD axis. For the He isotope separation, BaF2-SSD(low
gain) spectra are used. Although the separation of hydrogen isotopes from electrical noise is poor, 3He and
� particle are clearly identified. Few data has been reported for such good separation of He isotopes for
the ten’s MeV neutron experiments[5][6] except for a specialized spectrometer for � particles
measurements.[7] In the SSD(high gain)-Gas spectra, helium are separated clearly from hydrogen and
detector noise, but an isotope separations of helium are not be visible because of limited resolution of gas
counter due to low energy loss and a low yield. The peaks in the spectra is� particles from the 241Am
source (5.6MeV). It assures the detection threshold for� particle measurements is lowered well below
5MeV.

Fig. 4: 3-mode Particle Identification Spectra

The energy scales of the spectra are determined by the � particles from the 241Am, and peak
spectra of secondary proton and deuteron from H(n,xp) and C(n,xd) reaction, respectively.

P.I. mode SSD(high gain)-BaF2 SSD(low gain)-BaF2 Gas-SSD(high gain)
Particles and Energy
Range

Proton   > 5MeV
Deuteron > 6MeV
Triton   > 7.5MeV

3He   > 16MeV
�    > 18.5MeV

He   2.5-19.5MeV

3.3. Improvement of S/N
In order to examine the effect of the vacuum chamber, neutron collimator and neutron entrance

window, we compared the S/N in the present C(n,xp) measurements with that in the air environment[2].
The S/N values are compared about the total yields of secondary protons normalized to the sample weight.
The results are shown in fig. 5. By the present aparatus, the S/N values are enhanced more than decades
than conventional telescopes in the air environment.
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Fig. 5: S/N improvements

4. Thick Sample Condition
The sample for the spectra measurements should be much thinner than the shortest charged

particle range in the sample, because the energy loss distorts the spectra. However, we often must use
samples which is too thick for � particle (large dE/dX) measurements to obtain acceptable counting
because of limited neutron flux. Therefore, a data correction method to correct the charged particle spectra
for the effect of energy loss is desirable. We are considering to apply Baysian theorem for the corrections
(unfolding).

4-1. Response Function
In order to apply unfolding methods, the response function should be examined. We calculate it

for a sample(fig. 6). For protons, the energy of detected particles is very close to the primary energy, but it
differs largely in the�particle measurements because of large energy loss.

Fig. 6: Response Function of thick sample measurements

The measured spectrum dY/dH is the folded spectra of Reaction spectrum dY/dE by the response function.

To solve this Fredhorm integral equation, a simple approximation such as “average detected energy” (solid
lines in fig. 6) are currently used[8].  However it usually results in the overestimation of the maximum
energy of the spectra. Therefore, another unfolding methods are needed.
4-2. New Unfolding Methods based on Bayes’s Theory
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Let the di(i=1,m) be the measured spectra corresponding to pulse height bin hi , and pj(j=1,n) be
the primary spectra corresponding to energy bin ej . Then rij is defined as the probability that a particle of ej

is measured as pulse height hi. When we know the prior est(l)
j to the pj, if we have measured one particle of

pulse height hi, then the estimated spectrum est(l)j is improved by Bayes’ theory. After successive iteration,
the primary spectrum can be estimated.

Then we expand the theory to the present case: the measured spectrum di.(i=1,m) is given.
In this methods, we assume the flat spectra as the initial prior spectrum est(0)

j, then repeat the improvement
calculations until convergence.

4-3. Tests of Unfolding Capability using simulated spectra
We test the unfolding capability using simulated spectra (fig. 7).  The ideal primary spectra is

the solid line and the triangles are folded spectra by the response of�particle measurements in fig. 6. The
dots are the unfolded spectra obtained by 30times correction calculations. As the results, while the peak
separation is poor, the total yield and overall spectral shape are reproduced. This result indicates the
potential of the Bayses’ unfolding methods to solve the thick sample condition in the charged particle
spectra measurements.

      Fig. 7: unfolding tests using simulation calculation
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