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    Multi-step direct (p,p'x) processes are analyzed in terms of SCDW model that is

extended so as to use single particle wave functions for finite range potentials, i.e.,

harmonic oscillator and Woods-Saxson potentials, by means of the Wigner transform

of one-body mixed density. The effects of momentum distributions of target

nucleons on the multi-step direct processes are discussed. The calculated angular

distributions including multi-step processes up to 3-step are compared with

experimental data of 90Zr(p,p’x) reactions at incident energies of 80 and 160 MeV.

I. Introduction
    In recent years, proton nuclear data in the intermediate energy region are required for
various engineering and medical applications. In this energy region, the multistep direct
(MSD) processes in preequilibrium nuclear reactions become important. We applied SCDW
model to analyze the experimental data of MSD processes in (p,p’x) reactions [1-4]. The
results showed underestimation of the angular distributions at forward and backward angles. It
was found that one of the reasons was the use of a local density Fermi-gas (LFG) model to
describe the nuclear states. Hence, SCDW model was reformulated in terms of the Wigner
transform of one-body mixed density, so that more realistic single-particle wave functions of
target nucleons can be used. The first calculations with the single-particle wave functions for
harmonic oscillator (HO) potential [5] showed that the cross sections at forward and backward
angles were enhanced as expected, because of the higher momentum components of target
nucleons. However, they were somewhat small compared with the experimental data.
    In the present work, we use the single-particle wave functions for Woods-Saxon (WS)
potential and carry out the calculations for 90Zr(p,p’x) reactions at two incident energies of 80
and 160 MeV. The analysis is extended to include the MSD processes up to 3-step. We discuss
the effects of the momentum distributions of target nucleons on MSD angular distributions for
three cases, LFG, HO, and WS.

II. SCDW model with Wigner transform of one-body mixed density
    The detailed description and formulation of SCDW model have been given in
elsewhere[1-4]. Here, we explain the extension of SCDW model with the Wigner transform of
one-body mixed denisty.
    In each step of MSD, a target nucleon collides with a leading particle and is excited from



a single particle stateφα ( )r  at energy εα below the Fermi level, F, to a state φβ ( )r  at εβ  above

F. Then, the 1-step cross section is written by
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where the non-local kernel K( , ')r r is given by
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where ω is the energy transfer and the definition of other quantities is same as used in Refs.
[3,4]. Due to the closure property of the φ, K( , ')r r  is appreciable only when r ≈ r ′. If the LFG

model is used to describe the nuclear states, the φ are approximated by plane waves within a
small cell centered at r ≈ r ′. In terms of the Wigner transform of one body density matrix [6],
we can treat more realistic single particle wave functions in the finite range potentials, such as
HO or WS potential, in SCDW model. In Ref. [5], we gave the expressions of Wigner
transform for numerical calculations with a variation method. Here, we describe how to
incorporate them into SCDW model on the basis of Ref. [7].
    Let us start from general single particle model. The wave functions of struck nucleon,
φα ( )r and φβ ( )r , satisfy the following Schrödinger equation:

       
      h T Uγ γ γ γ γ γ γφ φ ε φ= + =( )        for  γ α= or β .    (3)

  
Then, K( , ')r r  can be re-written by
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where hα ( )r operates on φα ( )r , hβ ( )r on φβ
∗( )r .

    The Wigner transforms corresponding to hole and particle states, respectively, are given
as follows:
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wherekα  is the momentum of struck nucleon before collision andk β  the one after collision.
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     If we assume the potential Uα acting on struck nucleon before collision is approximately

equal to Uβ  acting on struck nucleon after collision, then

     
        h h T Tβ α β α( ) ( ) ( ) ( )r r r r− ≈ −  . (9)

    Furthermore, iff ( , )k r  is a slowly varying function of r , we can make an approximation

   T e f k e fi
h

i
hα α α α

α αµ( ) ( ,( ' ) / ) ( / ) ( ,( ') / )r k r r k r rk (r r') k (r r')− −+ ≈ +2 2 22 2
! ����

T e f k e fi
p

i
pβ β β β

β βµ( ) ( ,( ' ) / ) ( / ) ( ,( ' ) / )r k r r k r rk (r r') k (r r')− − − −+ ≈ +2 2 22 2
! ����

    Under these approximations, K c( ) ( , ' )r r  is finally given by
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where c denotes neutron or proton shell, q=kα -k β , and R=(r+r ′)/2. In deriving Eq.(12), the

normalization condition for all states is used, which leads to f fp h( ) ( )k ,R k ,Rβ β= −1 .  For

convenience, we write f fc
h

c( ) ( )( ) ( )k,R k,R= KHUHDIWHU�

    As did in Refs. [1-4], we use a local semi-classical approximation to distorted wave
χc

( ) '( )± r0  in Eq. (1)  we also make the approximationf fc c( ) ( )( ) ( , )k,R k r≈ � Thus, the final
1-step cross section is given as follows:
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where the product of local average N-N scattering cross section and density is given by
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is the two-body N-N scattering cross section.

    The extension to the 2- and 3-step processes is straightforward with Eq. (14) for each
collision point.



III. Results and Discussion
    Figs.1 and 2 show the momentum distributions, n(k), of target nucleons for HO and WS
potentials compared with that given by the LFG model in linear and logarithmic scales,
respectively. It should be noted that the one for WS potential is different from the previous
calculation[5], because the number of Gaussian basis as the variational function is different
between both the calculations, i.e., 20 in the present calculation and 10 in the previous one.
Enough large number of Gaussian basis is necessary for precise calculations of the Wigner
transform when the momentum k is larger than 2 fm-1. The other parameters used in the
calculation are the same as those in Ref. [5]. One can see that the momentum distribution by
the LFG model contains too much low momentum components and no higher momentum
components above the Fermi momentum. On the other hand, the momentum distributions
calculated by both finite range potentials show remarkable reduction of low momentum
components below 0.3 fm-1 and existence of higher momentum components compared with
LFG. Also, one can see some differences between momentum distributions for HO and WS
potentials in the high momentum region.
    The SCDW model with the Wigner transform was applied to the 90Zr(p,p’x) reaction at
two incident energies of 80 and 160 MeV in order to investigate the effects of the nucleon
momentum distribution on MSD processes. The basic input parameters, i.e., distorting
potentials, N-N scattering cross sections and nuclear density, were the same as in the previous
calculations [3,4]. Fig.3 shows comparisons of individual multi-step cross sections calculated
for three cases, LFG, HO, and WS, for the incident energy of 160 MeV. The 1-step cross
sections calculated with HO and WS potentials are enhanced remarkably at backward angles
compared with the LFG result that drops steeply at backward angles. The 1-step cross sections
for HO and WS are also larger than those for LFG at very forward angles near 0 degree. In
addition, some differences are seen between both HO and WS results; 1-step cross section for
WS is larger than that for HO at backward angles, but the 2-and 3-step cross sections show the
opposite behavior at backward angles.
    For three cases, (a) LFG, (b) HO and (c) WS, the SCDW calculations including 3-step
process are compared with experimental data in Fig. 4. The results with HO and WS potentials
are in better agreement with the experimental data[8] than that with LFG at backward angles.
Also, both results lead to some reduction of cross sections around 30 degree corresponding to
the quasi-elastic scattering angle and improve the shape of angular distributions in the entire
angular region. It is worthwhile to note that the sum of individual cross sections for HO is
almost same as that for WS, even if the individual cross sections are different, particularly for
the 1-step process, as shown in Fig. 3. For both cases of HO and WS, the cross sections
summed up to 3-step are somewhat smaller than the experimental data. This might suggest the
contribution from higher MSD steps.
    Fig. 5 shows comparisons of SCDW calculations for three cases with experimental
data[9] at the incident energy of 80 MeV. Similar behavior in individual cross sections can be
seen as in Figs.3 and 4. The summed cross sections for both HO and WS show much better
agreement with the experimental data at backward angles than those for LFG.

IV. Summary
    The SCDW model with the Wigner transform of one-body mixed density was applied to
the analysis of the 90Zr(p,p’x) reaction at 80 and 160 MeV. In the analysis, HO and WS
potentials was employed as the finite range potential to use more realistic single-partile wave
functions than the LFG model in SCDW. The SCDW calculations with HO and WS potentials



obviously improve the underestimation to the experimental data at backward angles, which is
seen in the calculation with LFG. The 1-step cross sections calculated with WS potential
increase at very forward and backward angles, more than those of HO potential. However, the
sum of individual cross sections is almost same for both potentials, because 2- and 3-step cross
sections calculated with W-S potential are smaller than those with HO potential at backward
angles. This result shows that the momentum distribution of target nucleons affects strongly
the 1-step cross sections at the forward and backward angles and the effect becomes weak as
the step number increases. Our calculation still somewhat underestimates the experimental
data at backward angles even if the higher momentum components of target nucleons are
considered, which should be further investigated. In addition, it will be necessary to
investigate the validation of the approximations used in Eqs. (10) and (11) in Sec. II.
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          Fig.3 Comparison of individual multistep cross sections for three cases, (a) LFG model,

(b) HO and (c )WS for the 
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 Zr(p,p’x) reaction at an incident energy of 160 MeV and an
outgoing energy of 120 MeV.
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          Fig.4 Comparison of calculation with experimental data for three cases, (a) LFG model,

(b) HO and (c ) WS for the 
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 Zr(p,p’x) reaction at an incident energy of 160 MeV and an
outgoing energy of 120 MeV. The experimental data are taken from Ref.[8].
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          Fig.5 Same as Fig. 4, but at an incident energy of 80 MeV and an outgoing energy of 60
MeV. The experimental data are taken from Ref.[9].


