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A nuclear mass formula is constructed which is composed of two parts, one describing the general trend of the

masses as a function of Z and N and the other representing deviations of individual masses from this general trend.

These deviations, referred to as shell energies, are calculated by a new method for spherical as well as deformed

nuclei only with use of spherical single-particle potentials. The root-mean-square deviation from experimentally

known masses is 0.68 MeV. The obtained mass formula is applicable to any nucleus with Z ≥ 2 and N ≥ 2. By

this mass formula α-decay energies are calculated, and α-decay half-lives of superheavy elements are estimated.

1 Introduction

Our group has been investigating for years the mass formula which is composed of two parts, one rep-
resenting the general trend of the masses as a function of proton and neutron numbers (Z, N) and the
other representing the deviations from this general trend [1, 2, 3]. The latter may be called shell energies
in a broad sense; it is caused by the shell structure and, if any, the deformation of the nucleus. The mass
formula in Ref. [4], which we obtained previously and is referred to as TUYY formula in the following,
was fairly successful in estimating the nuclear masses. However, it includes many adjustable parameters,
and cannot be extrapolated to the region of superheavy nuclei where no empirical data to determine the
necessary parameter values are available. Recently, we have solved this problem [5]. In this report we
briefly explain a new method of treating deformed nuclei in which only spherical single-particle potentials
are used. The mass formula obtained by this new method is capable of predicting the masses of nuclei
far from stability such as very neutron- or proton-rich nuclei and superheavy nuclei. In section 2, we
outline the calculation of the spherical shell energies. In section 3, we explain how to take into account
the deformation effect. In section 4, we construct a mass formula. Finally, we apply our mass formula to
superheavy nuclei in section 5.

2 Crude and refined spherical shell energies

We first calculate shell energies for neutron groups and for proton groups in spherical nuclei using an
extreme single-particle model; we refer to them as crude shell energies. We use a spherical single-particle
potential recently proposed [6, 7]. This potential reproduces fairly well the single-particle levels of 15
double-magic or magic-submagic nuclei in a wide nuclidic region ranging from 4He, 8He to 208Pb. The
potential parameters are assumed to be smooth functions of Z and N with due consideration of the
charge symmetry; several parameter sets were obtained in Refs. [6, 7], and we adopt the set HD.

Once the single-particle potential of the nucleus (Z, N) is prepared, we put n neutrons or n protons
in it from its bottom. Then the sum of the single-particle energies, which is denote by Ensp(n; Z, N) (or
Epsp(n; Z, N)), is a function of n, Z and N . For the purpose of extracting the deviations from a general



tendency in this sum, we construct a smooth function Ensp(n; Z, N) (or Epsp(n; Z, N)) to represent the
general tendency of Ensp(n; Z, N) (or Epsp(n; Z, N)). Then, the deviations are given as

Eifl(n; Z, N)=Eisp(n; Z, N)−Eisp(n; Z, N), (i=n, p). (1)

With these deviations, we obtain the crude shell energies as

Encr(Z, N) = Enfl(N ; Z, N), Epcr(Z, N) = Epfl(Z; Z, N). (2)

The subtraction of the smooth function Eisp(n; Z, N) as in Eq. (1) is made in two steps. In the first
step we subtract the Thomas-Fermi energy EiTF(n; Z, N). Although this first step subtracts a large part of
the smooth energy, a considerable amount still remains. In the second step, we further subtract a smooth
function ∆Eiav(n; Z, N) (i=n, p), which should be an approximation to Eisp(n; Z, N) − EiTF(n; Z, N)
(i=n, p). For details see Ref. [5].

Next, we modify these crude shell energies by taking into account the BCS-type pairing, and also
make some phenomenological reduction of the shell energies; we refer to the neutron and proton shell
energies thus obtained as refined spherical shell energies. In order to include the pairing effect, we take
a weighted average of the crude shell energies of neighboring nuclei with the weights related to the
occupation probabilities of the BCS theory. It is likely that the simple single-particle plus pairing model
is not sufficient to take full account of the configuration mixing. The remaining configuration mixing will
probably reduce the magnitudes of the shell energies. This effect is simply represented by a multiplication
of the shell energies by a reduction factor µ (a smooth function of N + Z and N − Z). Then we obtain
the refined spherical neutron and proton shell energies Ens(Z, N) and Eps(Z, N).

For a spherical nucleus the nuclear shell energy is simply the sum of the refined spherical neutron and
proton shell energies:

E0s(Z, N) = Ens(Z, N) + Eps(Z, N). (3)

3 Deformation

The shell energy of a deformed nucleus is expressed as the sum of two parts: the intrinsic shell energy
and the average deformation energy. As our method was already explained in a previous report [2], we
only give a sketch of it.

3.1 Intrinsic shell energy

We first assume that the intrinsic shell energy of a deformed nucleus is expressed as a superposition of
the proton and neutron shell energies of some spherical nuclei with certain mixing weights:

Ein(Z, N) =
∑

Z′
Wp(Z ′; Z, N)Eps(Z ′, N ′′) +

∑

N ′
Wn(N ′; Z, N)Ens(Z ′′, N ′), (4)

where N ′′ and Z ′′ are integers closest to NZ ′/Z and ZN ′/N , respectively. In this equation, the mixing
weights Wp(Z ′; Z, N) and Wn(N ′; Z, N) are obtained as

Wn(N ′; Z, N) = − 1
4π

dΩoc(r(N ′))
dN ′ , (5)

where Ωoc(r(N ′)) is the occupied solid angle for the radial coordinate r(N ′). This shows that the mixing
weight is related to the rate of the decrease of the occupied solid angle as r increases.

In the actual calculation, some modification is made in this procedure to get a reasonably large
deformation. We use an intermediary coordinate rim and an intermediary shape Ωim(rim) defined by

drim = {1 − h[1 − Ωoc(r)/4π]}dr, with h = 0.46,

Ωim(rim)rim
2drim = Ωoc(r)r2dr, (6)

and with rim and Ωim(rim) we proceed as above.
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3.2 Average deformation energy

We limit the deformation to axially and reflectionally symmetric shapes and assume the same shape for
the neutron group and proton group. We use uniform neutron and proton distributions with a sharp-cut
surface. Then the nuclear shape is described by the following radii as a function of the polar angle θ:

R(θ) =
R0

λ
[1 + α2P2(cos θ) + α4P4(cos θ) + α6P6(cos θ) + · · ·] , (7)

where P2i(cos θ) (i = 1, 2, . . .) are the Legendre polynomials and α2i are parameters to specify the shape.
Furthermore, R0 is the radius of the sphere whose volume is equal to that of the deformed nucleus under
consideration, and this volume conservation is guaranteed by the denominator λ. We take the expansion
in Eq. (7) down to the P6(cos θ) term.

As the contributions to the average deformation energy, we consider three kinds, the changes of the
surface energy ∆Es and the Coulomb energy ∆EC, and an energy to favor prolate shapes. The third
energy is usually not considered explicitly. In the present study, however, the experimentally observed
dominance of the prolate deformation is not obtained without such an energy. We assume the energy to
favor prolate shapes as

∆Eprl = −Cprl1α2A
2/3 exp [−Cprl2α2

2], Cprl1 = 0.28, Cprl2 = 5, (8)

where the factor A2/3 is introduced since this energy is a surface effect. The average deformation energy
is given as the sum of the above three energies:

Edef = ∆Es + ∆EC + ∆Eprl. (9)

3.3 Shell energies of deformed nuclei

Once the parameter values are fixed, the shell energy of the nucleus (Z, N) is obtained by minimizing the
sum of the intrinsic shell energy and the average deformation energy:

Esh(Z, N) = min
α2,α4,α6

[
Ein(Z, N) + Edef(Z, N)

]
. (10)

The deformation parameters α2, α4 and α6 giving the minimum energy specify the shape of the
ground state.

4 Mass formula

The functional form of our mass formula is similar to the TUYY formula [4]. It consists of three parts as

M(Z, N) = Mg(Z, N) + Meo(Z, N) + Msh(Z, N), (11)

where Mg(Z, N) is the term representing the gross feature of the nuclear mass surface, Meo(Z, N) is the
even-odd term, and Msh(Z, N) is the shell term for which we use the shell energies obtained in the last
section. The functional form of the gross term and even-odd term are given in Ref. [5]. The gross term
is the same as Eq. (2) of Ref. [4], but we make small modifications on the constants and coefficients.

In order to determine the values of the parameters in the gross and even-odd terms we compare
the calculated masses with the Audi-Wapstra95 [8] excluding the systematics values and also excluding
the nuclides with Z = 0, 1 and/or N = 0, 1. Then, 1835 masses are available. We first determine
the parameters in the even-odd term by inspecting the trend of the even-odd mass differences. The
parameters in the gross term are determined by the least-squares method in which we take the weight
for each nuclide as 1/(∆i + 0.7 MeV)2 where ∆i is the error in the mass of that nuclide. If the absolute
magnitude of a parameter becomes too large in this least-squares method, we constrain it to a reasonable
magnitude not to cause a drastic variation in light nuclei. The root-mean-square (RMS) deviation of our
formula from experimental data is 680.2 keV. In Fig. 1, deviations of calculated masses from experimental
data are roughly shown.
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5 Application to superheavy elements (SHE)

Responding to the recent increasing interest in superheavy elements we give some results based on the
new mass formula. To compare our predicted quantities with, we take two recent mass formulas, the
Finite Range Droplet Model (FRDM) [9] and the Extended Thomas-Fermi Strutinsky Integral (ETFSI)
[10].

5.1 Nuclear shell energies of SHE

For the mass formulas other than ours we tentatively define the shell energies as follows:

Esh(Z, N)c2 ≡ Mth(Z, N) − (Mg(Z, N) + Meo(Z, N)). (12)

where Mth(Z, N) are their theoretical mass values and Mg(Z, N) and Meo(Z, N) are ours.
We show these shell energies in Figs. 2, 3 and 4. These Figures show that the three kinds of shell

energies are similar to each other in the region of Z = 90− 110 and N = 136− 160, and slightly different
in the region Z = 110 − 130 and N = 180 − 190. According to our shell energies, the alleged magicity at
Z = 114 is not so remarkable, while the nucleus 310126 is doubly-magic although its double-magicity is
not so strong as 132Sn and 208Pb.

5.2 Qα and Tα of SHE

The main decay mode for the known heaviest elements is α-decay. We compare the calculated α-decay Q-
values, Qα, with other formulas. We also estimate the α-decay half-lives Tα: we use the phenomenological
formula by Viola and Seaborg [11],

log Tα(Z, N) = (aZ + b)/
√

Qα + (cZ + d), (13)

with

a = 1.66175, b = −8.5166, c = −0.20228, d = −33.9069 [12]. (14)

We show Qα and Tα in Figs. 5, 6 and 7. In Fig. 5(a), our α-decay Q-values present a feature of
magicity at Z = 114 and at Z = 126 as relatively wide gaps between isotope lines, while those of FRDM
have a large gap only at Z = 114, and those of ETFSI show no gap. Our α-decay half-lives Tα depend
on nuclides rather moderately compared with other predictions.
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Figure 1: Calculated masses minus experimental masses.
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Figure 2: Shell energy of KUTY formula [5]. Figure 3: Shell energy of FRDM formula [9] defined by
Eq. (12).
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Figure 4: Shell energy of ETFSI formula [10] defined by Eq. (12).
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Figure 5: Qα (a) and Tα (b) of superheavy elements from KUTY formula [5] for even Z. The solid lines connect
isotopes and dashed lines connect α-decay chains.
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Figure 6: Qα (a) and Tα (b) of superheavy elements from FRDM formula [9] for even Z. Same notation as in
Fig. 5.
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Figure 7: Qα (a) and Tα (b) of superheavy elements from ETFSI formula [10] for even Z. Same notation as in
Fig. 5.
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