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D-T neutron benchmark experiments for LiAlOsz, Li2TiOs, Li2ZrOs, Cu and W have been
conducted at FNS of JAERI to validate five nuclear data files. The former three are promising
advanced breeder materials and the latter two are important structural materials in a fusion
reactor. From the results, all the nuclear data files were confirmed to be fairly reliable with
respect to the prediction of neutron spectrum in the use of Li2TiOs and Cu. For LiAlO2 and W,
some large discrepancies between the experimental and calculated data were observed. For
LisZrOs, the C/E values became very large for all the nuclear data files.

1. Introduction

In a fusion reactor, blanket and structural materials are placed adjacent to the reactor core.
Of course they must be kept their intactness during operation. In a fusion reactor design to
predict their intactness accurately, it is very important to carry out the benchmark experiments
and to analyze their results for candidate blanket and structural materials. In the present study,
we focus on ceramic materials including lithium such as LiAlOg, Li2TiOs and Li2ZrOs and Cu and
W as an important structural material. Especially, LiAlO2, Li2TiOs and Li2ZrOs are regarded as
advanced solid breeder materials because of their inherent advantages such as chemical stability
at high temperature, good tritium recovery characteristic and so on. However no integral
experiments exist using these blanket materials until now.

In Japan Atomic Energy Research Institute (JAERI), a project started several years ago and
is now progressing including various fusion integral benchmark experiments [1]~[4]. The present
benchmark study is a part of the project and has been undertaken under the collaboration of
JAERI and Osaka University.
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The detector efficiency was determined through three measurements to cover a wide energy
dynamic range of the detector: (1) leakage neutron spectrum from a beryllium slab for lower
energy, (2) Energy and angle differential elastic scattering cross section of hydrogen using a
polyethylene sample for several to 13 MeV and (3) neutron source spectrum for 14 MeV. The fitted
curve with these experimental results was used for data reduction of the measurements. Fig.3
shows the efficiency curve.

3. Data analysis

Analyses of the experiments were carried out with the three-dimensional Monte Carlo code
MCNP-4B. For validation of cross section data, five evaluated nuclear data files, i.e., JENDL-3.2,
JENDL-FF, ENDF/B-VI, FENDL/E-1.0, and FENDIL/E-2.0 were selected as the cross section
libraries listed in Table 2. The assemblies as well as the detector collimator were modeled
precisely for the MCNP calculation. The measured source neutron spectrum was used as the
neutron source in the calculation.
4. Results

i) LiAlO2

Figures 4 and 5 show the measured leakage neutron spectra for LiAlOz of 25.4 c¢cm in
thickness and scattering angle of 24.9 deg., and the C/E values, respectively. The calculated
spectra are in fairly good agreement with the experimental data. However, an opposite trend is
seen at the elastic peak, that is overestimation for 0 deg. and underestimation for 24.9 deg.
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A good agreement is seen between the
experiment and calculation for the whole energy range and for all nuclear data files. However, the
spectrum calculated with ENDF/B-VI is smaller than other calculations. This is understood from
the neutron emission DDX comparison in Fig.9.

A valley around 10 MeV is observed similar to [.iAlOz in the calculated spectrum for only
24.9 deg. The valley might be caused by the discrepancy around about 10MeV of the neutron
emission DDX for Ti as is shown in Fig.9. However Li or O might cause it, because this is
also observed in LiAlOs.

iii) LieZrOs
Figures 10 and 11 show the measured leakage neutron spectra for LisZrOs of 25.4 ¢m in
thickness and scattering angle of 24.9 deg., and the C/E values, respectively. The discrepancy
between the experimental and calculated spectra is very large, that is overestimation of the
calculation. This discrepancy is observed in all the other results, i.e., the more the thickness of
assembly increases, the lager the discrepancy becomes. From the neutron emission DDX
comparison as is shown in Fig.12., one can understand the difference among the calculated
spectra below 1MeV, also in the C/E spectra. Similarly it is understood that the structures of
spectra calculated with ENDF/B-VI were different from those of other nuclear data files.
iv) Cu
Figures 13 and 14 show the measured leakage neutron spectra for Cu of 10.16 cm in
thickness and scattering angle of 24.9 deg., and the C/E values, respectively. The calculated
spectra are in fairly good agreement with the experimental data. However, the elastic scattering
peaks for 0 deg, do not agree with the calculations.
ENDF/B-VI and FENDL/E-2.0 are in excellent agreement with the experimental data
among five nuclear data files
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comparison of the neutron emission DDX as is
shown in Fig.18, one can understand the
overestimation around 3 MeV for JENDL-FF and
FENDL/E-2.0 and the underestimation around 10
MeV for ENDF/B-VI and FENDL/E-1.0.

As a whole, ENDF/B-VI and FENDI/E-1.0
are mostly reliable from the present
measurement, though they show a little
underestimation around 10 MeV from the DDX
comparison.

5. Conclusion

D-T neutron benchmark experiments for
advanced breeder materials and structural
materials have been conducted to validate five
nuclear data files. From the result, all the nuclear
data files were confirmed to be fairly reliable with
respect to the prediction of neutron spectrum in
the use of Li2TiOs and Cu. For LiAlO2 and W,
some large discrepancies  between  the
experimental and calculated data were observed.
For Li2ZrOs, the C/E values became very large for
all the nuclear data files.
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