Properties of Fission-Product Decay Heat from Minor-Actinide Fissioning Systems

Kazuhiro Oyamatsu^{*} and Hideki Mori Department of Energy Engineering and Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan e-mail : oyak@asu.aasa.ac.jp

The aggregate Fission-Product (FP) decay heat after a pulse fission is examined for Minor Actinide (MA) fissiles ²³⁷Np, ²⁴¹Am, ²⁴³Am, ²⁴²Cm and ²⁴⁴Cm. We find that the MA decay heat is comparable but smaller than that of ²³⁵U except for cooling times at about 10⁸ s (\approx 3 y). At these cooling times, either the β or γ component of the FP decay heat for these MA's is substantially larger than the one for ²³⁵U. This difference is found to originate from the cumulative fission yield of ¹⁰⁶Ru (T_{1/2}=3.2×10⁷ s). This nuclide is the parent of ¹⁰⁶Rh (T_{1/2}=29.8 s) which is the dominant source of the decay heat at 10⁸ s (\approx 3 y). The fission yield is nearly an increasing function of the fissile mass number so that the FP decay heat is the largest for ²⁴⁴Cm among the MA's at the cooling time.

1. Introduction

The Fission-Product (FP) decay heat from Minor Actinide (MA) fissiles has growing importance to realize innovative MA burners such as accelerator driven nuclear reactors. In this paper, we examine the difference of the decay heat between MA fissiles and ²³⁵U. The MA's studied here are ²³⁷Np, ²⁴¹Am, ²⁴³Am, ²⁴²Cm and ²⁴⁴Cm. For simplicity, we confine ourselves to the fast neutron induced fission because relatively hard spectra are expected in accelerator driven reactors. No neutron capture effects are taken into account as a natural consequence of a pulse fission.

^{*} present address : Faculty of Studies on Contemporary Society, Aichi Shukutoku University, 9 Katahira, Nagakute, Nagakute-cho, Aichi, 480-1197, Japan

2. Method of calculating FP decay heat

Input data required to calculate the FP decay heat are categorized into two. They are the fission-yield and decay data. The decay data consist of branching ratios (decay chains), half lives (decay constants) and average decay energy releases. These data are needed for about 1000 FP nuclides.

In this paper, the fission-yield and decay data are taken from ENDF/B-VI [1,2] because it is the only nuclear data library that has the fission-yield data for all the MA's of our interest.

The calculation of the decay heat power is straight forward in the summation method once the input database is prepared. In this paper, we use a handy computer code for personal computers [3] developed by one of the authors.

3. FP decay heat for MA fissiles

The FP decay heat power after a pulse fission of each MA is compared with that of 235 U as a function of cooling time.

Figure 1 shows the MA-to-²³⁵U ratio of the aggregate FP decay heat after a pulse fission. The MA decay heat is comparable but smaller than that of ²³⁵U except for cooling times at about 10⁸ s (\approx 3 y). At these cooling times, either the β or γ component of the FP decay heat for each MA is substantially larger than that for ²³⁵U.

In order to identify the source of the marked difference at 10^8 s, we examine decay energy releases from individual FP nuclides. Figure 2 shows the major sources of the decay heat at 7×10^7 s. The listed FP's in this figure cover 99% of the aggregate decay heat at the cooling time. It is clearly seen that the difference comes dominantly from ¹⁰⁶Rh. However, the half life of ¹⁰⁶Rh is only 29.8 s that is negligibly small compared with the cooling time. As shown in Fig. 3, at the cooling time ¹⁰⁶Rh is fed by its parent ¹⁰⁶Ru whose half-life is 3.2×10^7 s. Hence, the cumulative fission yield of ¹⁰⁶Ru is the dominant source of the difference between MA's and ²³⁵U. Actually, we see from Fig. 4 that the ¹⁰⁶Ru yields from these MA's are substantially larger than that from ²³⁵U. Moreover, the fission yield is nearly an increasing function of the fissile mass number. As a result, the FP decay heat is the largest for ²⁴⁴Cm among the MA's as shown in Fig. 1.

4. Conclusion

We examine the aggregate FP decay heat after a pulse fission for ^{237}Np , ^{241}Am , ^{243}Am , ^{242}Cm and ^{244}Cm . We find that the MA decay heat is comparable but smaller than that of ^{235}U except for cooling times at about 10^8 s

(~3 y). At these cooling times, either the β or γ component of the FP decay heat for these MA's is substantially larger than that for ²³⁵U. This difference is found to originate from the cumulative fission yield of ¹⁰⁶Ru (T_{1/2}=3.2×10⁷ s). This nuclide is the parent of ¹⁰⁶Rh (T_{1/2}=29.8 s), which the dominant source of the decay heat at 10⁸ s (~3 y). The fission yield is nearly an increasing function of the fissile mass number so that the FP decay heat is the largest for ²⁴⁴Cm among the MA's.

References

 T.R. ENGLAND and B.F. RIDER, "Evaluation and Compilation of Fission-Product Yields 1993," LA-UR-94-3106, Los Alamos National Laboratory, 1994.
T.R. ENGLAND, et al., "Decay Data Evaluation for ENDF/B-VI", Proc. Int. Sympo. on Nuclear Data Evaluation Methodology, Upton, 1992, pp. 611-22, 1993.
K. OYAMATSU, Easy-to-use Application Programs to Calculate Aggregate Fission-Product Properties on Personal Computers, Proc. 1998 Sympo. on Nucl. Data, JAERI-Conf 99-002, pp. 234-239, 1999.

Fig. 1. The MA-to-²³⁵U ratio of the aggregate FP decay heat after a pulse fission induced by a fast neutron.

Fig. 2. The major sources of the FP decay heat at 7×10^7 s.

Fig. 3 The portion of A=106 decay chain relevant to 106 Rh decay at 10^8 s.

Fig. 4. The cumulative fission yield of 106 Ru for the fast neutron induced fission.