TCA UO2 / MOX Core Analyses

Yoshihisa Tahara

Reactor Core Engineering & Safety Engineering Department Mitsubishi Heavy Industries, Ltd.
3-1,Minatomirai 3-chome Nishi-ku Yokohama 220-8401
e-mail: tahara@atom.hq.mhi.co.jp

Hideyuki Noda

Engineering Department Reactor Analysis Group Engineering Development Co., Ltd.
3-1,Minatomirai 3-chome Nishi-ku Yokohama 220-8401
e-mail: noda@atom.hq.mhi.co.jp

In order to examine the adequacy of nuclear data, the TCA UO₂ and MOX core experiments were analyzed with MVP using the libraries based on ENDF/B-VI Mod.3 and JENDL-3.2. The ENDF/B-VI data underpredict $k_{\rm eff}$ values. The replacement of 238 U data with the JENDL-3.2 data and the adjustment of 235 V-value raise the $k_{\rm eff}$ values by 0.3% for UO₂ cores, but still underpredict $k_{\rm eff}$ values. On the other hand, the nuclear data of JENDL-3.2 for H, O, Al, 238 U and 235 U of ENDF/B-VI whose 235 V-value in thermal energy region is adjusted to the average value of JENDL-3.2 give a good prediction of $k_{\rm eff}$.

- 1. Introduction UO_2 and MOX core experiments carried out using TCA of JAERI have been analyzed with the continuous energy Monte Carlo code MVP using the libraries based on ENDF/B-VI Mod.3 and JENDL-3.2 to examine the adequacy of the nuclear data. The effect on $k_{\rm eff}$ with fuel burnup was also evaluated with 2-D transport depletion calculation code PHOENIX-P using a 70-group library based on ENDF/B-VI.
- 2. Analyses and discussions MVP calculations are performed in three-dimensional core configuration shown in Fig.1. The cores whose moderator to fuel volume ratios are 1.5 ~ 3.0 for UO₂ and 2.42 ~ 5.55 for MOX are analyzed. The three libraries are examined here: ENDF/B-VI; ENDF/B-VI whose ²³⁸U data are replaced with that of JENDL3.2;

Fuel+Air (30cm)

Fig. 1 Core Configuration

JENDL3.2. The results are shown in Table-1.

The followings can be found from the table:

ENDF/B-VI gives lower $k_{\rm eff}$ by about 0.5% k/k for UO₂ cores and about 0.25% k/k for MOX cores.

²³⁸U of JENDL·3.2 raises k_{eff} by 0.2% k/k for UO₂ cores and 0.1% k/k for MOX cores,

JENDL3.2 gives higher k_{eff} by 0.2 to 0.4% k/k for UO₂ cores and 0.1 to 0.2% k/k for MOX cores.

Table 1 keff calculated with MVP for TCA U/MOX Cores

Core Name	Fuel rods array	EN/B-VI*	EN/B-VI+ J3.2 ²³⁸ U	JENDL3.2
1.50U	24X24	$0.99508 \pm 0.0251\%$	$0.99738 \pm 0.0243\%$	1.00419±0.0232%
1.83U	22X22	$0.99448 \pm 0.0250\%$	0.99661 ±0.0237%	1.00290±0.0244%
2.48U	20X20	$0.99448 \pm 0.0245\%$	$0.99614 \pm 0.0240\%$	1.00251 ±0.0243%
3.00U	19X19	$0.99444 \pm 0.0246\%$	$0.99658 \pm 0.0232\%$	1.00206±0.0230%
2.42Pu	22X22	0.99735±0.0236%	0.99843±0.0235%	1.00095 ±0.0240%
2.98Pu	21X21	$0.99782 \pm 0.0239\%$	$0.99882 \pm 0.0234\%$	1.00197±0.0232%
4.24Pu	20X20	0.99788±0.0232%	0.99878 ±0.0229%	1.00135 ±0.0224%
5.55Pu	21X21	0.99729±0.0216%	0.99825 ±0.0215%	1.00187 ±0.0218%

^{*} A cross-section library based on the ENDF/B-VI Mod.3 is used

The results are also shown in Fig.2 and Fig.3.

The reason why ENDF/B-VI data underpredict k_{eff} values was investigated. According to H.Takano, the k_{eff} values calculated with ENDF/B-VI are underpredicted and the harder neutron spectrum due to the inelastic scattering of ^{238}U and the v-value of ^{235}U are the cause of the underprediction[1]. Therefore, we did the check calculations to confirm the effects.

First, we processed inelastic cross-sections and scattering matrices of ²³⁸U of ENDF/B-VI and JENDL-3.2 with NJOY. The results are shown in Fig. 4 and Fig. 5.

Fig. 4 In-elastic Scattering Cross-sections and Matrix of ENDF/B-VI

Fig.5 In-elastic Scattering Cross-sections and Matrix of JENDL-3.2

It is obvious from the figures that the continuum scattering matrix of ENDF/B-VI is smaller than that of JENDL-3.2 and gives harder neutron spectrum, and hence more neutron leakage.

In order to confirm that the cause of the underprediction of $k_{\rm eff}$ for the TCA critical experiments is the neutron leakage from the core, the $k_{\rm inf}$ values of MVP were compared for an infinite array of the PWR standard cell shown in Fig.6. As can be seen from Table 2, the replacement of ^{238}U nuclear data gives little effect on $k_{\rm inf}$ of the infinite array system. So, it is clear that the difference of inelastic scattering matrix, especially that of the continuum, affects strongly $k_{\rm eff}$ prediction of experimental cores through the change in neutron leakage from the cores.

Table 2 Effect of ²³⁸U on infinite lattice

	$\mathbf{k}_{ ext{inf}}$
ENDF/B-VI ²³⁸ U	1.38273±0.0153%
JENDL-3.2 ²³⁸ U	1.38254±0.0153%

Fig.6 PWR standard cell

Secondly, the fission-reaction rate ($_{\rm f}$) averaged v-value of JENDL3.2 in the thermal energy range below 2.1 eV was calculated and then v-value of $^{235}{\rm U}$ of JENDL-3.2 was found to be bigger than that of ENDF/B-VI by 0.14% and the adjustment to v-value of $^{235}{\rm U}$ of ENDF/B-VI increase multiplication factor by 0.09% k/k.

$$\overline{\mathbf{v}}_{t}^{JENDL3.2} = \frac{\int \mathbf{v} \phi E}{\int \sigma \phi dE} = 2.4372, \quad \overline{\mathbf{v}}_{t}^{ENDF/B-VI} = 2.4338, \quad f = \frac{\overline{\mathbf{v}}_{t}^{JENDL3.2}}{\overline{\mathbf{v}}_{t}^{ENDF/B-VI}} = 1.0014.$$

Energy dependence of ²³⁵v-values is presented in Fig.7.

Fig.7 Number of neutrons per fission

The effect of the replacement of ^{238}U is 0.2% k/k and the adjustment of ^{235}v is 0.1% k/k. Finally, summing up those effects, we can explain 0.3% difference totally in 0.4 ~ 0.5% difference found in Table 1. It is shown in Fig.2 and Fig.3 that the modified library taken into account of them gives almost the same calculation accuracy of k_{eff} for both UO₂ and MOX cores.

The effect on $k_{\rm eff}$ due to the change in ^{238}U and 235 data with fuel burnup have been also evaluated with 2-D transport depletion calculation code PHOENIX-P. Nuclear data of both libraries were processed and 70 energy-group libraries were generated with NJOY for this purpose. A 17 × 17 PWR standard assembly was used for the evaluation. The result is shown in Fig.8. It can be found from the figure that the total effect on $k_{\rm eff}$ is 0.1% k/k at 0 MWd/t and -0.07% k/k at 60 GWd/t for a PWR 17 × 17 standard assembly with 4.1 w/o enriched UO₂ rods.

Fig.8 Change in keff with Burnup

The effect of the difference of nuclear data between JENDL-3.2 and ENDF/B-VI on $k_{\rm eff}$ value was investigated for the TCA 15 × 15 UO₂ core with fuel rods of 2.6w/o ^{235}U . The results are shown in the Table 3 where, e.g., in the case of "JENDL-3.2 base", the reference $k_{\rm eff}$ value is based on all the JENDL-3.2 data and the nuclear data of a nuclide is replaced with the corresponding data of ENDF/B-VI. Considering the result obtained previously with regard to 235 , it can be concluded that the use of the JENDL-3.2 data with ^{235}U of ENDF/B-VI whose 235 in thermal range is adjusted to the average value of JENDL-3.2 gives good criticality: keff=0.99916+0.0009=1.00006.

Table 3 $k_{\rm eff}$ values calculated with MVP for the TCA 15 × 15 core

JENDL3.2 Base

ENDF/B-VI Base

Cross section Library	MVP		Cross-section Library	MVP	
	Keff	(%)		Keff	(%)
J3.2 (H,O,Al,U235,U238)	1.00293±0.0236	0.000	ENDF/B-VI (H,O,Al,U235,U238)	0.99487±0.0234	0.000
J3.2 (O,Al,U235,U238) ENDF/B·VI(H)	1.00258±0.0232	-0.035	ENDF/B-VI (O,Al,U235,U238) J3.2 (H)	0.99593±0.0239	0.107
J3.2 (H,Al,U235,U238) ENDF/B·VI(O)	1.00275±0.0239	-0.018	ENDF/B-VI (H,Al,U235,U238) J3.2 (O)	0.99626±0.0248	0.140
J3.2 (H,O,U235,U238) ENDF/B-VI(Al)	1.00172±0.0239	-0.120	ENDF/B-VI (H,O,U235,U238) J3.2 (Al)	0.99607±0.0240	0.121
J3.2 (H,O,Al,U238) ENDF/B-VI(U235)	0.99916±0.0239	-0.376	ENDF/B-VI (H,O,Al,U238) J3.2 (U235)	0.99873±0.0244	0.388
J3.2 (H,O,Al,U235) ENDF/B-VI(U238)	0.99995±0.0238	-0.297	ENDF/B-VI (H,O,Al,U235) J3.2 (U238)	0.99726±0.0243	0.241
ENDF/B·VI(H,O,Al,U235,U238)	0.99487±0.0234	0.808	J3.2(H,O,Al,U235,U238)	1.00293±0.0236	0.808

H is the cross section of H₂O

H is the cross section of H₂O

3. Conclusions UO₂ and MOX core experiments of TCA have been analyzed with MVP using the libraries based on ENDF/B·VI and JENDL·3.2. It has been found that the replacement of ²³⁸U data with the JENDL·3.2 data and the adjustment of ²³⁵V·value raise the k_{eff} values obtained using ENDF/B·VI based library by 0.3% for UO₂ cores, but still underpredict k_{eff} values. On the other hand, the use of a combined library of JENDL·3.2 for H, O, Al, ²³⁸U and ENDF/B·VI for ²³⁵U whose ²³⁵V in thermal energy region is adjusted to the average value of JENDL·3.2 seems to give a good prediction of k_{eff}, while the adequacy should be examined from other points of view, e.g., reaction rate ratio measurements, PIE data etc.

Acknowledgements

The authors express their thanks to Mr. Yasunori Nagaya of JAERI, who supplied them with the MVP library based on ENDF/B-VI Mod.3.

Reference

[1] Takano, H., et al: "Reactor Benchmark Testing for JENDL3.2, JEF-2.2, and ENDF/B-VI-2," Int. Conf. Phys. of Nucl. Sci. Technol. (1998).