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A calculation of the two-step process with the sudden approximation is described. The
Green’s function which connects the one-step matrix element to the two-step one is represented
in r-space to avoid the on-energy-shell approximation. Microscopically calculated two-step
cross sections are averaged together with an appropriate level density to give a two-step cross
section. The calculated cross sections are compared with the experimental data, however the
calculation still contains several simplifications at this moment.

1. Introduction

Quantum mechanical theories of the preequilibrium nuclear reaction have been developed
in recent years. There are three well-known statistical multi-step direct (MSD) theories, those
are the theories of Feshbach, Kerman, and Koonin (FKK)[1], Tamura, Udagawa, and Lenske
(TUL)[2], and Nishioka, Weidenmüller, and Yoshida (NWY)[3]. The FKK theory has a rather
simple and feasible formulation in contrast with the TUL and NWY models, and it has been
applied to analyses of the medium- and high-energy nuclear reactions. A long-standing problem
exists, however, i.e. the on-energy-shell approximation in the Green’s function made by FKK
is inadequate.

The other two theories employ the different statistical assumptions — the adiabatic and
sudden approximations. According to an argument of the time scale of nuclear reactions,
an additional particle-hole pair creation is much faster than residual configuration mixing.
Therefore the sudden approximation is favored. However no calculation has been done with
the NWY model so far, because of its somewhat complicated formulation.

In this study, we calculate the MSD two-step process with the sudden approximation.
The nuclear state is expressed by the single-particle shell model. The residual interaction is
assumed to be a central Yukawa form with the range of 1 fm. Calculated inelastic scattering
cross sections are compared with the experimental data.

2. Microscopic Cross Section of the Two-Step Process

Cross sections of a two-step process in Fig. 1, A + a→ C + c→ B + b, is given by(
dσ

dΩ

)
2step

=
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Fig. 1: 2-step process, coupling of angular momenta.

where I is the spin of nucleus, S, L, J are the intrinsic spin, angular momentum, and total spin
of nucleon, k the wave number, and l, s, j the transfered angular momentum and spin. The
transition matrix element t is given by[4]

tmmbma

lsj =
∑

LaJaLbJb

Ĵb l̂ŝ〈LaSa0ma|Jama〉〈LbSbm,−mb|Jbm−mb〉

× 〈Jajmb −m,ma −mb +m|Jama〉Am
LaLb

(θ)I lsj
LaJaLbJb

, (2)

where Am
LaLb

(θ) is the angle factor, and I lsj
LaJaLbJb

is the radial overlap integral,

I lsj
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=
4π
kakb

∫
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radraχ

Jb
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(kbrb)h

lsj
LaJaLbJb

χJa
La
(kara), (3)

which contains a radial kernel hlsj
LaJaLbJb

of the two-step process. When one uses the zero-range
approximation, the kernel becomes[5]

hlsj
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FLcJc(rb, ra) = fl2(p2h2; rb)G
(+)
LcJc

(rb, ra)fl1(p1h1; ra), (5)

where G(+)
LcJc

(r′, r) is the partial-wave expanded Green’s function which connects the one-step
matrix element to the two-step one. The Green’s function in r-space representation[6] can be
calculated as

G
(+)
LcJc

(rb, ra) = − 2µ
h̄2kc

χLcJc(kcr<)HLcJc(kcr>), (6)

where χLcJc(kcr) is the distorted wave for the intermediate state, HLcJc(kcr) is the out-going
wave which is an irregular solution of the Schrödinger equation. These functions have asymp-
totic forms

χ(kcr) ∼ {F (kcr) + C [G(kcr) + iF (kcr)]} eiδC , (7)
H(kcr) ∼ {G(kcr) + iF (kcr)} e−iδC , (8)
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where G(kcr) and F (kcr) are the Coulomb functions, and δC the Coulomb phase shift.
In Eq. (5), fl(r) is the form factor which expresses p-h state excitation. We assumed that

the particle-hole residual interaction has the Yukawa form with the range of 1 fm. According to
an expression of the two-step process with the sudden approximation, an intermediate state is
always 1p-1h state. Therefore the formfactor for the first collision fl1 in Eq. (5) is 〈1p1h|V |0〉,
and the second formfactor becomes 〈2p2h|V |1p1h〉. However we replaced the second one by
〈1p1h|V |0〉 for the sake of simplicity. This simplification will be removed in future.

3. Transition to Continuum

Double differential cross sections of the two-step process to the continuum state are calcu-
lated as(
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dΩdEb

)
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where the target spin IA and the spin transfer s are assumed to be zero, ρ̂ is the true level
density[7]. As seen in Fig. 2 there are four different paths to arrive the same 2p-2h state.
Amplitudes corresponding to those paths are coherently summed up to give the final two-
step amplitude. An example of this rearrangement is shown in Fig. 3, which is the angular
distribution of 208Pb(p, p′) reaction, for Ein = 22 MeV, l = 3, and the excited 2p-2h state is
|1f7/20h9/2(2s1/2)−1(1d3/2)−1〉 in the Z shell. The optical potential used is the Walter-Guss’
potential and the strength of the residual interaction V0 is taken to be 30 MeV. The thick
solid line stands for the coherent sum of four amplitudes which correspond to the different
intermediate state. The dot-dashed line is the incoherent sum of the cross sections shown by
the thin lines.

Since the 2p-2h state density in the residual nucleus is very large, it is difficult to calculate
Eq. (9) directly. We approximate Eq. (9) by(

d2σ

dΩdEb

)
2step

=
∑

l

(2l + 1)ω(2, 2, Ex)R4(l)
(
dσ

dΩ

)
l
, (10)

where (dσ/dΩ)l is the averaged two-step cross section for the angular momentum transfer of l,
ω(2, 2, Ex) is the state density of Betak-Dobes[8], R4(l) the spin distribution.
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Fig. 2: Four paths to arrive a 2-particle 2-hole state. (1) is the basic configuration, (2) shows an
exchange of the two holes, (3) shows an exchange of the two particles, and (4) shows exchanges
of the two holes and two particles, respectively.
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The average cross section in Eq. (10) is calculated by means of a random sampling of the
2p-2h state, and the microscopic cross sections for those states are Gaussian averaged. Figure 4
shows various two-step cross sections (light lines) and the average of them (heavy line).

A comparison of the calculated angular distribution of inelastically scattered neutrons
from 93Nb for Ein = 25.7 MeV and Eout =12.5 MeV, with the experimental data[9] is shown
in Fig. 5. The dashed line is the one-step cross section, and the dotted line is the two-step
one. The effective interaction strength V0 used was 30 MeV. This result is similar to the NWY
calculation of Koning and Akkermans[10], although they made some additional approximations
to make calculations easier.

Figure 6 shows a comparison of the angle-integrated energy spectra for the 25.7 MeV
neutron incident reaction on 93Nb. The energy spectrum consists of the one-step, two-step,
and Hauser- Feshbach components, and the elastic scattering, collective, and (n, 2n) reactions
are not included. The sum of one-step and two-step processes well reproduces the experimental
data near 15 MeV.

4. Conclusion

We described how the two-step cross sections with the sudden approximation are calculated.
At this moment it contains several approximations, such as the replacement of the formfactor
at the second collision, use of a phenomenological level density formula, and so on. Such
simplifications will be removed in future to give a calculation which is more in line with the
NWY theory.
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Fig. 3: Microscopic two-step cross sections for 208Pb(p, p′), for Ein =22 MeV. The 2p-2h pairs
are created in the Z shell. The thin lines are the contributions of each path in Fig. 2, the thick
sold line is the coherent sum of the four paths, and the thick dot-dashed line is the incoherent
sum.
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Fig. 4: Averaged microscopic two-step cross sections for the angular momentum transfers of 2
and 3. The heavy solid lines are averaged values multiplied by the state density (on the right
axis), and the light lines are some typical microscopic cross sections (on the left axis).
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Fig. 5: Comparison of the calculated angular distribution of inelastically scattered neutrons
from 93Nb for Ein =25.7 MeV, and Eout =12.5 MeV, with the experimental data.
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Fig. 6: Energy distribution of the emitted neutrons for the 25.7 MeV neutron incident reaction
on 93Nb.
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