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Abstract

Wemake a new formulation of the QMD approach, which can give correctmean-square

radii for initial nuclei. Then the reaction cross-sections are calculated with various energy

region. We succeed to reproduce experimental data even below 100 MeV/u nicely.

The measurament of the innteraction cross-section (�I) at relativistic energy must be a

good tool to to determine radii of anormalous nuclei as well as normal nuclei. By combining

this measurament with the Glauber calculation, furthermore, we will get information of

density-distribution of anormalous nuclei, such as halo and skin structures. This method is,

however, satis�ed only for collisions above several hundred MeV/u, where the elementary

NN cross-section does not have strong energy-dependence, and the trajectory of a projectile

nucleus is well approximate to be straight.

On the other hand we need to make theoretical analysis of experimental results with

the beam energy below 100 MeV/u, where a lot of data is available from RIKEN. In this

calculation we must consider e�ects of energy-dependence of theNN cross-section and curved

trajectory of initial nuclei in reaction around 50-100 MeV/u energy region.

Recently we developed a framework of QMD [1] plus statistical decay model (SDM) [2],

and applied systematically this QMD + SDM to nucleon- (N-) induced reactions. It was

shown [2] that this framework could reproduce quite well the measured double-di�erential

cross-sections of (N,xN') type reactions from 100 MeV to 3 GeV incident energies in a sys-

tematic way. In the subsequent papers [3, 4], we gave detailed analysis of the pre-equilibrium

(p,xp') and (p,xn) reactions in terms of the QMD in the energy region of 100 to 200 MeV.

In these analysis, a single set of parameters was used, and no readjustment was attempted.

In this work we make initial nulcei with correct root-mean-square radii while one has

not carefully treated them, and examine reaction cross-sections with the QMD approach in

several kinds of energy region.

Now we briey explain our formulation.

In the QMD, each nucleon state is represented by a Gaussian wave-function of width L,
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1

(2�L)3=4
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#
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where Ri and Pi are the centers of position and momentum of i-th nucleon, respectively.

The total wave-function is assumed to be a direct product of these wave-functions. Thus the
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one-body distribution function is obtained by the Wigner transform of the wave-function,

f(r;p) =
X
i

fi(r;p); (2)

fi(r;p) = 8 � exp

"
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2L(p�Pi)
2

�h2

#
: (3)

The equation of motion of Ri and Pi is given by the Newtonian equation

_Ri =
@HQMD

@Pi
; _Pi = �

@HQMD

@Ri
; (4)

and the stochastic N-N collision term. Hamiltonian H consists of the kinetic energy and the

energy of the two-body e�ective interaction.

The Hamiltonian is separated into several parts as follows.

HQMD = T + VPauli + Vlocal + VMD + VCoulomb (5)

where T , VPauli, Vlocal and VMD are the kinetic energy, the Pauli potential, the local (momentum-

independent) potential and the momentum-dependent potential parts, respectively.

The Pauli potential [5, 6, 7, 8] is introduced for the sake of simulating the Fermionic

property in a semiclassical way. This phenomenological potential prohibits nucleons of the

same spin � and isospin � from coming close to each other in the phase space. Here we

employ the Gaussian form of the Pauli potential [6] as

VPauli =
1

2
CP

�
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For the convenience of the explanation we separate the local potential part into the

Coulomb force, the Skyrme type force with the symmetry terms and the Gaussian force.

Vlocal = VSky + VSym + VG (7)

The VSky and the VSym describe the zero range nuclear force whose detailed form is given

as

VSky =
�

2�0

X
i

< �i > +
�

(1 + �) ��0

X
i

< �i >
�
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X
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(1� 2jci � cjj) �ij (8)

with
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i
; (9)

To describe the �nie range nuclear interaction the Yukawa force is often used, but it

consumes a rather long CPU time. Instead of that we take the Gaussian force VG as

VG =
�G

2�0

X
i

< gi > (10)
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Table 1: E�ective interaction parameter set

� (MeV) �1:00

� (MeV) 188.42.

� 1.33333

�G (MeV) �107:52

Cs (MeV) �258:54

C
(1)
ex (MeV) �258:54

C
(2)
ex (MeV) 375.6

�1 (MeV) 2.35

�2 (MeV) 0.4

L (fm2) 1.2

Lg (fm
2) 2.0

q0 (fm) 2.0

p0 (MeV) 100:0

Cp (MeV) 53:5

with

< gi > �

X
j 6=i

gij �

X
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(4�Lg)
�3=2 exp

h
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2
=4Lg

i
; (11)

where

Lg = 2L+ g (12)

The momentum-dependent term is introduced as a Fock term of the Yukawa-type interac-

tion. We divide this interaction into two ranges so as to �t the e�ective mass and the energy

dependence of the real part of the optical potential [11]:

VMD = V
(1)
MD + V

(2)
MD

=
C
(1)
ex

2�0

X
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2�0
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1 +
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�2

i2 �ij : (13)

In the above expression we have forteen parameters Vp; q0; P0, �; �; �; �g; Cs, V
(1)
MD; V

(2)
MD;�1;�2

and the Gaussian width L and Lg. We parametrzie their values to reproduce properties of the

ground state and the energy-dependence of the empirical proton-nucleus optical potential; in

Table 1 we give a parameter-set

In our method we do not de�ne the ground state of nuclei as a energy minimum state of

the system, while in a usual method they get the initial distribution by searching the energy

minimum state with the frictional cooling method [5]. The other parameters are determined

to reproduce properties of �nite nuclei as follows. To get the initial nuclear distribution we

�rst distribute the particles randomly in phase space and cool down the system according to

the damping equation of motion until the energy reaches the experimental value. Then we
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examine its stability by evaluating equations of motion for initial nucleons until 500 fm/c.

We determine the parameters of the mean-�elds to root-mean-square radii of various nuclei,

which are calculated by averaging events and several time steps, when the binding energies

agree with the experimental value. Here the Pauli potential is determined to give a averaged

kinetic energy 25 MeV for 40Ca.

Fig. 1 shows calculation results of time-averaging root-mean-square radii of several nuclei,

whose binding energies are given as experimental data.
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Fig. 1: Time averaging root-mean-square radius of ground state nuclei. Open circles show the

results of QMD and the full squares indicate expermental results.

In Fig. 2 we show the time-dependence of the root-mean-square radii in one event. We

can see that the uctuation is not so large in the time evolution.
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Fig. 2: Time dependence of root-mean-square radii of 12C (dashed line), 40Ca (solid line), 92Zr

(solid line).
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As a next step we calculate energy-dependence of reaction cross-sections in the QMD

approach. We de�ne a reaction event where one NN collision occures, and evaluate the

reaction cross-section by summing reaction probabilities for all impact-parameters.

For the collision judgment including the Gaussian width we use the possibility given by

the following equation

1

(2�L)3

Z
d
3
xd

3
y�fbcoll � jxT � yT jg exp

"
�

(x�Ri)
2 + (y�Rj)

2

2L

#
; (14)

where � is the step function, and bcoll is given from the total NN cross-section as

�T = �b
2
coll (15)

with the NN collision cross-section �T experimentally observed.

In Fig. 3 we draw target-mass-number dependence of reaction cross-sections for the carbon

beam at 83 MeV/u and 300 MeV/u. We can see that the QMD approach nicely reproduce

exerimental results [9] even below 100 MeV/u. Then we can conclude that our approach is

e�ective for the present purpose.
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Fig. 3: Target-mass dependence of the reaction cross-sections of collisions with the carbon beam

at the incident energies 300 MeV/u (upper column) and 83 MeV/u (lower column). Experimental

data (squares) are taken from Ref. [9].

In summary we make a new QMD formulation to give correct root-mean-square radii
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for stable nuclei, anc calculate the reaction cross-sections in several energy region. We well

succeed to reproduce experimental data up to about 80 MeV. Now we are testing reactions

with isotope beams. After that we will extend this approach to control initial distribution

and to determine the radii of exotic nuclei.
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