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1. Introduction

The search for the best set of optical model parameters having energy dependent terms is a non-

linear multi-dimensional minimization problem with a given set of reference measurements and physical

constraints. Deterministic approaches, such as the gradient or non-linear least square methods, often

lead a resulting �2 to local minima for their fast convergence. On the other hand, grid search approach

such as the simulated annealing (SA) method [1] is known to give a pseudo-global minimum of �2 [2, 3].

But the SA method has two major shortcomings; the convergence speed and the absence of a covariance

matrix. The convergence of the SA method becomes extremely slow as �2 approaches the minimum.

Furthermore, the SA method does not provide a covariance matrix, which the deterministic method

does, and this is useful for a parametric study of the optical model analysis. In the present work, the

grid search and deterministic approaches were sequentially applied to take advantage of both methods.

2. Simulated Annealing Method

Simulated annealing method tries to �nd coeÆcients of the global optimum parameters, giving

minimum �
2 with respect to the reference measured data.

The actual procedure of SA operation in the present work is :

� Start with initial coeÆcients within their upper and lower bounds provided by the user and set

initial sampling range VMj as half of the bounds. Estimate �
2 with starting set of coeÆcients.

�j 2 [LBj ;UBj ]

VMj =
1

2
(UBj � LBj)

(�2)0 = �
2 (�0j ) (1)

� For next step, it randomly chooses a trial point within the step length of VMj and �
2 is evaluated

at this point with random variable yj

�
k+1
j = �

k
j + yj � rj ; yj 2 [�1; 1]

(�2)k+1 = �
2(�k+1j ) (2)

� This �2 is compared to its previous one. All downhill moves are accepted and the algorithm

continues from that trial point. i.e.

accepted if (�2)k+1 < (�2)k (3)

� Uphill moves may be accepted; the decision is made by the Metropolis criteria with random

variable z

also accepted if exp

�
(�2)k � (�2)k+1

T

�
> z; z 2 [0; 1] (4)

It uses T(temperature) and the size of the uphill move in a probabilistic manner. The smaller T

and the size of the uphill move are, the more likely that move will be accepted.



� If the trial is accepted, the algorithm moves on from that point. If it is rejected, another point is

chosen instead of a trial evaluation.

� Each element of VMj is periodically adjusted so that half of all function evaluations in that

direction are accepted.

�j =
number of accepted

number of trial
(5)

VMj = VMj (1:0 + c (�j � 0:6)=0:6) if �j > 0:6

VMj = VMj (1:0 + c (0:4� �j)=0:4) if �j < 0:4 (6)

� A fall in T is imposed upon the system with the RT variable by

Tn+1 = RT �Tn (7)

where n is the nth iteration with the same T. Thus, as T declines, uphill moves are less likely to be

accepted and the percentage of rejections rise. Given the scheme for the adjusting VM, VM falls.

Thus, as T declines, VM falls and SA focuses upon the most promising area for optimization.

� The termination criteria for the search is set if the last four �2's from the last four di�erent T's

di�er from the current �2 by less than the user-de�ned tolerance(EPS) and the current �2 at the

current T di�ers from the current optimal �2 by less than EPS.

The parameter T is crucial in using SA successfully. It in
uences VM, the step length over which

the algorithm searches for optima. For a small initial T, the step length may be too small; thus the

search may fail to �nd the global optima. The user should carefully examine to make sure that VM is

appropriate. The relationship between the initial temperature and the resulting step length is function-

dependent.

3. Nonlinear model and Marquardt-Levenberg Method

Let us brie
y review the nonlinear �tting using excerpts of ref. [4]. With nonlinear dependences, the

minimization must proceed iteratively for a nonlinear model with the set of M unknown parameters

ak; k = 1; 2; : : : ;M .

We expect the �2 function to be well approximated by a quadratic form, written as

�
2(a) � 
 � d � a+

1

2
a �D � a (8)

where d is an M -vector and D is an M �M matrix. Let us examine how to calculate the gradient and

Hessian of �2 merit function. The model to be �tted is

y = y(x; a) (9)

and the �2 merit function is

�
2(a) =

NX
i=1

�
yi � y(xi; a)

�i

�2
(10)

The gradient of �2 with respect to the parameters a, which will be zero at the �
2 minimum, has

components

@�
2

@ak
= � 2

NX
i=1

[yi � y(xi; a)]

�2i

@y(xi; a)

@ak
K = 1; 2; : : : ;M (11)

Taking an additional partial derivative gives
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It is conventional to remove the factors of 2 by de�ning

�k � �
1

2

@�
2

@ak
�kl �

1

2

@
2
�
2

@ak@al
(13)

making [�] = 1

2
D in equation (8), and rewriting the equation as a set of linear equations

MX
l=1

aklÆal = �k (14)

This set is solved for the increments Æl that, added to the current approximation, give the next approx-

imation. In the context of least-squares, the matrix [�], equal to one-half times the Hessian matrix, is

usually called the curvature matrix. iNote that the components �kl of the Hessian matrix (12) depend

both on the �rst derivatives and on the second derivatives of the basis functions with respect to their

parameters. Second derivative term can be dismissed when it is zero (as in the linear case), or small

enough to be negligible when compared to the term involving the �rst derivative. As the de�nition of

the �kl, we will use the formula

�kl =

NX
i=1

1

�2i

�
@y(xi; a)

@ak

@y(xi; a)

@al

�
(15)

Marquardt has put forth a method, related to an earlier suggestion of Levenberg, for varying smoothly

between the extremes of the inverse-Hessianmethod and the steepest descent method. The latter method

is used far from the minimum, switching continuously to the former as the minimum is approached.

This Marquardt-Levenberg method works well in practice and has become the standard of nonlinear

least-squares routines. The method is based on two elementary insights. Marquardt's �rst insight is

that the components of the Hessian matrix, even if they are not usable in any precise fashion, give some

information about the order-of-magnitude scale of the problem. The quantity �
2 is non-dimensional,

i.e. is a pure number; this is evident from its de�nition(10).

On the other hand, �k has the dimensions of 1=ak, which may well be dimensional, i.e. have units

like cm�1, or kilowatt-hours, or whatever. The constant of proportionality between �k and Æak must

therefore have the dimensions of a2k. Scan the components of [�] and you see that there is only one

obvious quantity with these dimensions, and that is 1=�kk, the reciprocal of the diagonal element. So

that must set the constant by some (non-dimensional) fudge factor �, with the possibility of setting

�� 1 to cut down the step, In other words, replace equation (??) by

Æal =
1

�all
�l or �allÆal = �l (16)

It is necessary that all be positive, but this is guaranteed by de�nition (15).

Marquardt's second insight is that equations (16) and (14) can be combined if we de�ne a new matrix

�
0 by the following prescription

�
0

jj � �jj(1 + �)

�
0

jk � �jk(j 6= k) (17)

and then replace both (16) and (14) by

MX
l=1

�
0

klÆal = �k (18)

When � is very large, the matrix �0 is forced into being diagonally dominant, so equation goes over

to be identical to (16). On the other hand, as � approaches zero, equation (18) goes over to (14).

Given an initial guess for the set of parameters a, the present work performs the following proce-

dure [5] :



� Compute �2(a).

� Pick a modest value for �.

� (y) Solve the linear equations (18) for Æa and evaluate �2(a+ Æa).

� If �2(a+ Æa) � �
2(a) , increase � by a factor of 10 and go back to (y).

� If �2(a + Æa) < �
2(a), decrease � by a factor of 10, update the trial solution a a + Æa, and go

back to (y).

Once the acceptable minimum has been found, one wants to set � = 0 and compute the matrix

[C] � [�]�1 (19)

which is the estimated covariance matrix of the standard errors in the �tted parameters a.

4. Application and Results

A reference measurements set was constructed based on the analyses of raw experimental data and/or

other sources of evaluations. The search procedure starts with the SA algorithm with the reference

data set and physical constraints imposed on the functional forms of optical model parameters. The

importance of the reference points were dynamically shifted in the course of the SA search, varying their

corresponding errors, based on the physical constraints and eye guidance. Appropriate conditions were

studied on whether the SA reaches the vicinity of the global minimum of the �2. Then the procedure is

switched into a deterministic way using the Marquardt-Levenberg Method to accelerate the convergence

to the global minimum, as well as to produce a covariance matrix. Figure 1 shows the characteristics

of minimum �
2's achievable from three cases, namely the simulated annealing alone, the Marguardt-

Levenberg alone, and combination of the two methods, in the domain of adjustable parameters. In �g.

2, the change of �2 is plotted as the iteration proceeds for three cases. As shown, a global minimum

is obtained by combining the Marquardt-Levenberg (ML) Algorithm and the simulated annealing (SA)

methods. It is also noted that the SA method alone stops at the vicinity of the real minimum and the

M-L method traps in the local minimum.
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Figure 1: Characteristics of �2 for 3 cases: the simulated annealing (SA) alone, the Marguardt-

Levenberg(ML) alone, and combination of the two methods
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Figure 2: �2 changes as a function of iterations as the iteration proceeds for three cases


