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Abstract
Non-statistical properties of the neutron resonance level dispositions are investigated con-
sidering time behaviors of the compound nucleus. A resonance which is a quasi-stable
state can be decomposed into a set of normal modes. From the requirement of the time
periodic recurrence of the resonance state, frequencies of these normal mode must be
commensulable (integer ratios) with each other. Therefore the excitation energy of a
resonance is described as a sum of inverse integers. We tentatively adopt an expression
Ex = C

∑
1
n , where n=integer and C=34.5MeV. Time unit in recurrence is 1.20×10−22s.

Possible sets of inverse integers are deduced for the resonances of light e-e nuclei.

1. Introduction
Non-statistical descriptions of the fine-structure resonances will be a developing field of
the nuclear physics. For a long time more than 3-decades, non-statistical distributions of
neutron resonance levels are reported by several authors[1-8]. The methods of analyses
are Dij distributions (spacings between arbitrary two levels), Fourier analysis, and the
compilation of levels or spacings of many levels, etc. By these analyses, dominant level
spacings are found which appear more frequently than the statistical predictions. For the
neutron resonance levels of light e-e target nuclei up to several hundred keV, many of the
dominant spacings D∗

0 can be expressed as Dij =C /mn, where C=34.5 MeV and m,n are
integers[8].
These features of level distributions are diametrically different from the predictions of the
statistical model, which is based on the random hypothese on the highly excited states of
the compound nucleus.
In order to interprete these regularities in real resonances, we have developed the ”Recur-
rence model” of the compound nucleus[9], where time periodic behaviors of the resonance
reactions are explicitely discussed.
In this article, are described the recurrence relation for normal mode ensemble, and the
expansion of nuclear excitation levels into sum of inverse integers. Sets of integers for
resonances of 32S+n etc. are deduced.

2. Time periodicity of resonance reactions
Neutron plane wave have a form expi(kx− ωt), where k is wave number vector, ω angu-
lar frequency, x and t are space and time coordinates. Wave packet length or coherent
length of neutron is ∼ 10−8 m, measured by the neutron interferometry, or by neutron
resonance width, which is suffieciently longer than the nuclear radius. Scattering of the
incident plane wave by a spacially peridic scatterer induce ”Bragg reflection”, where kx
term plays essencial role, and the diffraction patterns is the Fourier transform of the pe-
riodic lattice structures.
Similarly, scattering by time periodic scatterer induce resonances where ωt term plays
essential role. At a resonance, time period of incident neutron wave 2π/ω will be in an
integer ratio to the time period τ of the compound nuclear system (A+ 1). Neutron wave
incident on target nucleus is divided into passing component and penetrating compo-
nent. The passing component passes by the target nucleus without interaction, and the
penetrating one excites many degrees of freedom on the compound nucleus, and comes
out with much information on the compound nucleus. The observed cross section is the
resultant of these two components. At a resonance, time structures of the coming out
component must be time periodic, coherent with the passing component, and constructive
interference occurs in succeeding wave train. At off resonance, destructive interference
occurs and make no effect except potential scattering. In a word, resonance phenomena
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in energy domain inevitably relate to the recurence phenomena in time domain.

3. Recurrence relation
Eigen functions of stable descrete states are time peridic functions. This will be true for
the descrete levels of nuclei with many degrees of freedom. We assume that the states
of descrete levels of the compound nucleus can be approximately expanded into a set of
M normal modes (M≤10), which are independent with each other and oscillating with
angular frequencies ωj , (j = 1, 2, ..,M). Total Hamiltonian is a sum of ones for these normal
modes.

H = H1 +H2 + ...+HM , ......................(1)

The compound nuclear states ψ(x, t) can be described as a direct products of these normal
modes,

ψ(x, t) = ψ1(x1, t)⊗ ψ2(x2, t)⊗ ...ψM (xM , t). .......(2)

Though the detailed structures of ψj(xj , t) are not known, following recurrence theorem
for many oscillators system will be valid.
As j-th normal mode oscillates with a fixed frequency ωj, the initial phase reappears every
time period of τj = 2π/ωj. Influence of the tolerable phae error of 1 rad.[9] is negligibly
small in the frequency ratios. Total compound nuclear system recurs with a time period τ
which is the least common multiple (LCM) of time period τj of each normal mode. There-
fore, the time periods of these normal modes must be commensulable(integer ratios) with
each other, with a time unit τ0. Then, the total energy of the compound nucleus Ex, sum
of h̄ωj, must be written as a sum of inverse integers,

Ex = h̄(
M∑

j=1

ωj) = 2πh̄
M∑

j=1

1
τj

=
(2πh̄
τ0

) M∑
j=1

1
nj
, .....(3)

where nj are integers and τ0 is time unit for this resonance. This expression will be valid
for energies Ex of the bound and unbound descrete levels.

4. Excitation levels and Time unit
In a previous report[8], we have shown that there are special spacings (dominant spac-
ing) which appear frequently between two arbitrary resonances. For the resonances of 15
light e-e target nuclei up to several hundred keV, 30 dominant spacings D0(recoil effect
corrected) are found. Among these D0, integer ratios and the least common energy(LCE)
(similar to the least common multiple for two integers) are found. LCE distributions are
shown in Fig.1, where peaks appear at 1406, 2027, 2655,...,9100keV. Energy ratios among
these peaks indicates that they are from few common values, divided by integers. Then
we tried second LCE process(LCE-2). Distributions of LCE-2 are shown in Fig.2, where
peaks appear at 34.5, 39.9, 48.6, 57.6MeV, where 34.5MeV is the predominant peak. If
we use peaks with circles in Fig.1, distributions of LCE-2 are shown in Fig.3, where the
34.5MeV peak remains. Though some umbiguity exists, we got a result that many of D0

are written as D0 = C/mn, where C=34.5MeV and m,n = integers.
Therefore, in Eq.(3), we tentatively adopt excitation energies and τ0 expressed as

Ex = C
∑ 1

n
(n : integer), C = 34.5MeV, .......(4)

and the time unit

τ0 =
(2πh̄
C

)
= 1.20× 10−22s. ......(5)

This time unit is neary equal to the reaction time measured by other experiments.
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5. Expansion in sum of inverse integers
Roughly speaking, the normal modes here correspond to the excitons [10], of which num-
ber are estimated as nx ∼ (g0Ex)1/2 where Ex is excitation energy in MeV, g0 = A/13 the
single particle level density at the Fermi energy for mass number A. For nuclei of A∼30,
average nxis ∼ 3 at Ex ∼ 5MeV.
To prove the validity of Eq.(4), we tried to expand Ex in sum of C/nj less than three
terms for levels of light nuclei using a computer, where nj ≤ 100, with relative accuracy
less than 1x 10−3. Resonance parameters are taken from a book of recent eddition[11].
For example, in 32S+n, the 1st 1/2+ resonance is at En =102.7 keV. Excitation en-
ergy is Ex = Sn + E∗n= 8741.2keV, where Sn=8641.6keV is neutron separation energy
and E∗n=En(A/(A + 1) is recoil corrected neutron energy. A possible expansion for the
above resonance is Ex = C[1/5 +1/30 +1/50] = 34500(38/150) =8740keV. A number set
(5,30,50) is considered as a possible index of this resonance. For ten 1/2+ resonances of
32S+n up to 1.66 MeV, En, E∗n, Ex, possible index, LCM, Erec, and δ etc. are shown in
Table 1. A shematic energy levels of C/n are shown in Fig.4.
It is interesting that for considerable number of resonances of light nuclei, Ex can be
written by two terms of inverse integers, Ex=C(1/m + 1/n), where m is small numbers.
Moreover, a few single term levels Ex=C(1/m) are seen. For 57 resonances of 32S+n be-
low 1.66MeV, Ex of 22 resonance are C(1/4 + 1/n), and 3 resonances are C(1/5 + 1/n).
Other resonances are of three terms. For 24 resonances of 34S+n below 1.47MeV, Ex of
12 resonance are C(1/5 + 1/n), and 3 resonances C(1/6 + 1/n), and no resonance with
C(1/4 +1/n).

6. Level spacings
From Eq.(4), level spacings Dij are written as

Dij = Ej − Ei = C(
∑

b

1
nb
−

∑
a

1
na

) = C
∑ nc

nanb
. ....(6)

This include, as a simple case, the dominant level spacings D0= C/mn [8].
Among 10 s-wave resonances of 32S+n below 1.66MeV, D0=575keV appears three times.
These spacings coincide within error of 1 keV; D13=575.4keV, D37=575.9keV, and D510=
575.5keV,respectively. By the indexes in Table 1, these spacings are equal to C(1/20-
1/30) =C(1/10-1/12) = C/60= 575 keV. Another spacing D0=358keV appears two times;
D37= 358.6keV,and D710= 358.2keV=C/96. The ratio 358keV/575keV is equal to 5/8.
We denote the spacings 575keV as ”a”, 358keV as ”b”. Dispositions of the above reso-
nances are described as /a/b/a-b/b/, where ”/” means a real resonance. Amang these
resonances, spacing /a+b/=934keV appears two times. In these level dispositions, sym-
metric patterns /a/b/a/ are seen with a spacing ratio 8:5:8, and /b/a-b/b/ with a ratio
5:3:5. Symmtric patterns similar to the above can be found frequently for the nuclei of
wide mass region.

7. Recurrence energies
For the 1st resonance of 32S+n at 102.7 keV, a possible index 5,30,50 are propotional to the
time periods of the normal modes excited for this resonance. Therefore, the recurrence
time period of the compound nucleus is 150τ0 as the LCM of the indecis. We define the
”Recurrence energy Erec ” as

Erec = C/(LCM), .....................(7)

where C=34.5MeV. For this resonance, Erec=C/150=230 keV.
There might be simple integer ratio between time period of incident neutron wave and
the compound nucleus; ie. between Erec and E∗n. We tried to calculate R and δ defined
below,

δ = Erec ×R− E∗n ........... (8)

where R is simple integer(or half integer) which minimize | δ |. For this resonance, Erec=
230 keV, E∗n = 99.6 keV, and if we take R=1/2, δ = 230 × (1/2) − 99.6 = 15.4keV . For ten
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1/2+ resonances of 32S+n up to En ≤ 1.66MeV, parameters are shown in Table 1. It is
interseting that δ are 10∼25keV and δ distribute around Sn - C/4 = 16.6 keV. Similar
results are obtained for 47 resonances of 1/2−,3/2−,3/2+,5/2+ states of 32S+n.
For the resonances of 34S+n, many of Ex are expressed as Ex=C(1/5+1/n), and δ dis-
tribute around Sn - C/5 = 85.8keV.

8. Discussions
From the observes neutron resonance data in light nuclei, we have reduced a common fac-
tors C on the resonance energies and τ0 for the reaction time. Another common factors
may exist in different mass region.
In order to back up the reality of C/n expansion, we searched for the case where Ex is
simple terms of C/n, and have some speciality.
a) Among 43 resonances of 33S+n below 548keV, Γn and Γα are extraordinaly large for
84.88keV resonance, where Ex =11499keV =C/3.
b) First excited state of 48Ca is at 3832keV =C/9.
c) Neutron resonances with considerably large Γn have Ex with simple integer ratios to
C. For example, resonance energies (recoil corrected) of first seven resonances of 16O+n
are (17/240)(C/6), (1/4)(C/7), (5/13)(C/7), (9/13)(C/7), (9/11)(C/7), (15/14)(C/7) and
(13/10)(C/7).

Sukhoruchkin reported ∆=4.6MeV as a dominant spacing among excited states of
many light nuclei, which is equal to the mass difference between π± and π0. Also ∆ =9me,
where me is electron mass 0.511MeV.[12]. The ∆ is in simple integer ratio to C. that is ∆
= (2/15)C = (1/3-1/5)C.
These facts support possibility of the non-statistical description of the highly excited
states of nucleus, where oscillator (exciton) energies are preseved, and simple algebra in
eigen energies are valid.
Further investigations are needed to find out more clear images of the resonance com-
pound nucleus.
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