Integral Test of JENDL-3.3 for Thermal Reactors

Keisuke OKUMURA and Takamasa MORI

Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 e-mail: okumura@mike.tokai.jaeri.go.jp, mori@mike.tokai.jaeri.go.jp

Criticality benchmark testing was carried out for 59 experiments in various thermal reactors using a continues-energy Monte Carlo code MVP and its different libraries generated from JENDL-3.2, JENDL-3.3, JEF-2.2 and ENDF/B-VI (R8). From the benchmark results, we can say JENDL-3.3 generally gives better k_{eff} values compared with other nuclear data libraries. However, further modification of JENDL-3.3 is expected to solve the following problems: 1) systematic underestimation of k_{eff} depending on ²³⁵U enrichment for the cores with low (less than 3wt.%) enriched uranium fueled cores, 2) dependence of C/E value of k_{eff} on neutron spectrum and plutonium composition for MOX fueled cores. These are common problems for all of the nuclear data libraries used in this study.

1. INTRODUCTION

The latest version of Japanese Evaluated Nuclear Data Library (JENDL-3.3) [1] was released in May, 2002. When it was completed, a criticality benchmark testing [1] of JENDL-3.3 had bee carried out for various types of fast and thermal reactors by Reactor Integral Test Working Group in JNDC. As far as thermal reactors, however, further test is necessary, because the previous benchmark calculation was made only for 13 experiments carried out in JAERI facilities TCA, STACY, TRACY and JRR4. Especially for UO₂ or MOX fueled thermal-neutron cores, the test was done only for TCA experiments. Although the lattice pitches and loading patterns can be varied in TCA, fuels are limited to 2.6wt.% enriched UO₂ and 3.0wt.% MOX. Thus integral test covering more cores with different fuel specifications are required. In the present study, results of the extended integral test of JENDL-3.3 by using a continuous-energy Monte Carlo code are shown for totally 59 experiments in various thermal reactors including the previous benchmark cores. Results with JENDL-3.2[2], JEF-2.2 [3], and ENDF/B-VI (R8) [4] are also shown for comparison.

2. BENCHMARK CORES

Table 1 shows the benchmark cores selected in this study. Most of them are light water moderated UO_2 or MOX fueled uniform lattices at room temperature. Exceptions are as follows:

- Fuel material of TRX is metal uranium (Al clad cylindrical rod),
- Temperature of KRITTZ-2 in hot condition is about 245°C,

- Fuels of STACY and TRACY are homogeneous uranyl nitrate solutions,
- JRR4 is a light water moderated research reactor which uses MTR type fuel elements. In 1998, the fuel material of JRR4 was changed from 93% enriched U-Al alloy to 20% enriched U₃Si₃-Al dispersed alloy. Two minimum critical cores (JRR4-U93 and JRR4-U20) at room temperature with the above different fuels are selected in this study,

Except for JRR4, TRACY and MISTRAL, the benchmark problems are taken from public international benchmark literatures, in which details of experimental procedures, material compositions, calculation modeling and evaluated benchmark uncertainties are described. See the literatures given in Table 1 for details.

Lattice names	H/HM	Fuel (Enrichment)	Remarks		
TRX-1	3.3	Metal-U (1.3 % Triangular pitch=1.806cm, 764 rods		[5]	
TRX-2	5.6	²³⁵ U), Al cladding	Triangular pitch=2.174cm, 578 rods	[3]	
	2.4		Pitch=1.485cm, 44x44 rods, Temp.=19.7°C,		
KKI1Z2:1 Cold	5.4		Boron: 218ppm, Hc=65.28cm		
KRITZ2:1 Hot	2.8		Pitch=1.485cm, 44x44 rods, Temp.=248.5°C,	[6] [7]	
		UO ₂ (1.86% ²³⁵ U)	Boron: 26ppm, Hc=105.5cm		
	5.0	Zry-2 cladding	Pitch=1.635cm, 40x40 rods, 22.1°C,		
KK11Z2:13 Cold			Boron: 452ppm, Hc=96.17cm		
	4.1		Pitch=1.635cm, 40x40 rods, 243.0°C,		
KK11Z2:13 H0t			Boron: 280ppm, Hc=110.9cm		
DAWG M	5.4	UO ₂ (2.5% ²³⁵ U)	LEU-COMP-THERM-008-001*	гот	
Daw-Cole Al	5.4	Al cladding	4961 rods, Boron: 1511ppm		
TCA-1.50U	1.2		LEU-COMP-THERM-006-001 ~ 003*		
(3 cases)	4.3		Pitch=1.849cm, 19x19,20x20,21x21 rods		
TCA-1.83U	5.0		LEU-COMP-THERM-006-004 ~ 008*		
(5 cases)	5.5	UO ₂ (2.6% ²³⁵ U)	Pitch=1.956cm, 17x17,18x18,19x19,20x20,21x21		
TCA-2.48U	7.0	Al cladding	LEU-COMP-THERM-006-009 ~ 013*	[8]	
(5 cases)	7.2		Pitch=2.150cm, 16x16,17x17,18x18,19x,19,20x20		
TCA-3.00U	0.6		LEU-COMP-THERM-006-014 ~ 018*		
(5 cases)	8.6		Pitch=2.293cm, 15x15,16x16,17x17,18x18,19x19		
DIMPLE3	3.0	UO ₂ (3.0% ²³⁵ U)	LEU-COMP-THERM-048-001*	[8]	
	5.1	UO ₂ (3.7% ²³⁵ U)	Boron: 300ppm		
MISTRAL Core I					
	8.4	LIO (7.00/ ²³⁵ L)	LEU-COMP-THERM-018*		
DIMPLE/		$UU_2(7.0\% U)$	Pitch=1.32cm, 376 rods, Hc=53.9cm		
	from 73 to 103	uranyl nitrate solution	LEU-SOL-THERM-005-001 ~ 007*		
STACY			7 cases of solution fueled cores with different	[8]	
(7 cases)			uranium concentrations from 225 to 310 gU/liter in		
		(10% 0)	a water reflected 60cm cylindrical tank		
TRACY	52	uranyl nitrate	Solution fuele in a 50cm cylindrical tank with a	ι [11]	
		solution	channel for a transient rod (out of core)		
		$(10\%^{235}\text{U})$	Run-64, Temp.=27.8C, 430gU/l, Hc=45.3cm		
JRR4-U20	-	U ₃ Si ₃ -Al dispersed	Minimum critical core with 12 MTR type fuel	1	
		alloy (20% ²³⁵ U)	elements		
JRR4-U93	-	U-Al alloy	Minimum critical core with 12 MTR type fuel	[12]	
		(93% ²³⁵ U)	elements		
KRITZ2:19 Cold	10.4	MOY	Pitch=1.80cm, 25x24 rods, Temp.=21.1°C,		
		MUA	Boron: 4.8ppm, Hc=66.56cm	[6]	
KRITZ2:19 Hot	8.5	(1.5% Pu-t) $^{239}\text{Du}/\text{Du}=0.014$	Pitch=1.80cm, 25x24 rods, Temp.=235.9°C,		
		Pu/Pu=0.914	Boron: 5.2ppm, Hc=104.2cm		

Table 1Benchmark cores

TCA-2.42PU	12.0		MIX-COMP-THERM-004-001 ~ 003*		
(3 cases)	12.0		Pitch=1.825cm, 23x23 rods, Date:1972-1974		
TCA-2.98PU	14.0	MOX (3.0% Pu-t) Pu-fiss./Pu ~ 0.75	MIX-COMP-THERM-004-004 ~ 006*		
(3 cases)	14.8		Pitch=1.956cm, 21x21 rods, Date:1972-1975	101	
TCA-4.28PU	21.1		MIX-COMP-THERM-004-007 ~ 009*		
(3 cases)	21.1		Pitch=2.225cm, 20x20 rods, Date:1972-1974		
TCA-5.50PU	27.6		MIX-COMP-THERM-004-010~011*		
(2 cases)	27.6		Pitch=2.474cm, 21x21 rods, Date:1972-1973		
CRX-Case 1	4.9	MOX (6.6% Pu-t) ²³⁹ Pu/Pu=0.906	MIX-COMP-THERM-003-001*		
			Pitch=1.3208cm, 23x22 rods, Hc=82.90cm	_	
CRX-Case 2	6.4		MIX-COMP-THERM-003-002*		
			Pitch=1.4224cm, 19x19 rods, Hc=81.295cm		
CDV C 1	6.4		MIX-COMP-THERM-003-003* (Boron:337ppm)	rø1	
CKX-Case 5			Pitch=1.4224cm, 21x21 rods, Hc=88.06cm		
CDV Care 4	13.8		MIX-COMP-THERM-003-004*	[0]	
CKA-Case 4			Pitch=1.8679cm, 13x13 rods, Hc=68.41cm		
CRX-Case 5	16.7		MIX-COMP-THERM-003-005*		
			Pitch=2.01158cm, 12x12 rods, Hc=76.76cm		
CRX-Case 6	31.6		MIX-COMP-THERM-003-006*		
			Pitch=2.6416cm, 11x11 rods, Hc=79.50cm		
MISTRAL Core 2	5.1	$\mathbf{MOX} (7.0\% \mathbf{Pu} \mathbf{t})$	Pitch=1.32cm, Boron: 0ppm	[9]	
MISTRAL Core 3	6.0	WIOA (7.0% Fu-t)	Pitch=1.39cm, Boron: 230ppm	[10]	

*Benchmark identification numbers in the "Handbook of International Criticality Safety Benchmark Evaluation Project (ICSBEP)"[8],

H/HM: ratio of atomic number densities of hydrogen and all heavy metal nuclides in fuel, Pitch: rectangular lattice pitch, NxN: loading pattern of fuel rods in rectangular lattice, Hc: critical water height, Date: measurement date in Pu core, Temp: system temperature, Boron: boron concentration in water moderator if any

3. MVP CALCULATION

A series of benchmark calculations was performed by using a continuous-energy Monte Carlo code MVP [13, 14] and its four different nuclear data libraries generated from JENDL-3.2, JENDL-3.3, JEF-2.2 and ENDF/B-VI(R8). The library generation was performed with the LICEM code system [15, 16]. The thermal scattering law data $S(\alpha,\beta)$ for the JENDL-3.3 and ENDF/B-VI(R8) libraries were taken from ENDF/B-VI, while the data for the other libraries were taken from ENDF/B-III. The resonance shielding effects in unresolved resonance region was treated by the probability table.

In each of the MVP calculations, the first 30 cycles were skipped, followed by 1,000 active cycles, each with 10,000 particles per cycle. Statistical errors (1 σ) of k_{eff} values are within the range from 0.00015 to 0.00025.

As far as the MISTRAL cores are concerned, MVP results are referred from the literatures [9, 10] published by NUPEC members, because detailed information to construct 3D modeling of the MISTRAL cores are not opened. The JENDL-3.3 result for the MISTRAL cores has not been reported yet.

4. RESULTS AND DISSCUSSIONS

(1) Uranium fueled cores

Figure 1 shows the C/E values of k_{eff} for the uranium fueled benchmark cores. In this figure, the values for the TCA cores (TCA1.50U, TCA-1.83U, TCA-2.48U and TCA3.00U) are the averages for the three or five experiments in which fuel loading patterns (See in Table 1) are different but the lattice pitches are the

same. The averaging was done because meaningful differences or systematic tendency were not observed for the C/E values among the experiments. The value for the STACY core is also averaged one for the seven experiments in which uranium concentration are different in the range specified in Table 1. In Fig.1, benchmark cores are lined up in the order of ²³⁵U enrichment and in the order of H/HM values for the cores with the same enrichment.

Fig.1 C/E values of k_{eff} for uranium fueled benchmark cores

From Fig.1, the followings are observed:

- The calculated k_{eff} values are larger in the order of the JENDL-3.2, JEF-2.2, JENDL-3.3 and ENDF/B-VI (R8) results.
- JENDL-3.2 overestimates criticality by about 0.5%Δk or more for the core in which ²³⁵U enrichment is higher than 3.0wt.% (e.g. MISTRAL-C1, DIMPLE-3/-7, STACY, TRACY, JRR4), whereas it underestimates criticality of the core in which the enrichment is lower than 2.0 wt.% (e.g. TRX-1/-2, KRITZ2:1, KRITZ2:13).
- In the JENDL-3.3 results, the overestimations observed in the JENDL-3.2 results are improved. This is mainly due to the modification [1] of thermal cross section data of 235 U. For the STACY and TRACY results, modification of thermal cross section of 14 N(n,p) is also contributing to the improvement by about 0.2% Δ k. [17]
- For the cores with relatively lower ²³⁵U enriched fuels, all nuclear data libraries give underestimated results. It is significant especially for ENDF/B-VI (R8) which gives lower k_{eff} , compared with other libraries. The underestimation depends on ²³⁵U enrichment systematically.
- The KRITZ2 benchmark gives information on the prediction accuracy for total temperature coefficient.
 From the difference of the C/E values among hot and cold conditions in KRITZ2:1 and KRITZ2:13,
 JENDL-3.2 gives the most accuracy result.
- (2) MOX fueled cores

Table 2 shows the plutonium compositions of the MOX fueled benchmark cores. For the MISTRAL cores, it is reported that the plutonium fuel has regular plutonium composition. The KRITZ2:19 and CRX benchmarks are useful to test cross section data of ²³⁹Pu, because ²³⁹Pu contents in these cores are more than 90wt.% and the reactivity contribution of higher-order plutonium isotopes and ²⁴¹Am is small. In addition, the two experiments in KRITZ2:19 and six experiments in CRX were performed within four and three months, respectively. Therefore, plutonium aging effects, which is reactivity loss due to decay from ²⁴¹Pu to ²⁴¹Am with half-life of 14.4 years, can be neglected in these benchmarks. On the other hand, the TCA-MOX and MISTRAL benchmarks are important because their fuel compositions are similar to those of MOX fueled LWRs. In these cores, plutonium aging effects should be taken into account.

Lattice name	Pu238	Pu239	Pu240	Pu241	Pu242	Am241
KRITZ2:19	-	91.4	7.9	0.4	0.03	0.3
CRX	-	90.5	8.6	0.8	0.04	0.1
TCA-4.24PU*	0.5	68.1	22.0	7.1	2.0	0.3
TCA-2.98PU**	0.5	68.1	22.0	6.1	2.0	1.3

 Table 2 Composition of Pu composition (wt.% including Am241)

*oldest (13, Apr., 1972) and ** latest (21, May, 1975) experiments in the TCA-MOX benchmark

At first, time dependence of the C/E values was investigated for eleven experiments in the TCA-MOX benchmark. The MVP results with JENDL-3.2 and JENDL-3.3 are shown in Fig. 2. In the JENDL-3.2 results, the C/E values have a tendency to increase slightly as time passes. It was improved in the JENDL-3.3 results due to the modification [1] of ²⁴¹Am capture cross section in JENDL-3.3.

Fig.2 Time dependence of C/E values (k_{eff}) for MOX fueled TCA cores

Figure 3 shows the C/E values of k_{eff} for all of the MOX fueled benchmark cores. In this figure, the values for the TCA cores (2.42PU, 2.98PU, 4.28PU, 5.50PU) are not averaged ones but values for the 4 experiments measured within 24 days. This is for excluding the plutonium aging effect. From Fig.3, the followings are observed:

- Remarkable differences are not observed between the k_{eff} values of JENDL-3.2 and JENDL-3.3 results. The k_{eff} values obtained with JEF-2.2 and ENDF/B-VI(rev.8) are smaller than those with JENDL-3.2 and JENDL-3.3.

- From the results for the TCA and CRX cores, where H/HM values varied from about 5.0 to 30.0, it is said that the C/E values depend on neutron spectra in MOX fueled cores. The dependency seems to be attributed to ²³⁹Pu cross section data, because the dependency is observed in CRX, where contributions of higher-order plutonium isotopes and ²⁴¹Am are small in CRX.
- From the comparison between the KRITZ2:19 and CRX results, significant dependency of the C/E values on plutonium enrichment is not observed in the MOX cores with high ²³⁹Pu content. On the other hand, the C/E values are quite different between the results for TCA and MISTRAL, in which MOX fuels have more contents of higher-order plutonium and ²⁴¹Am, compared with KRITZ2 and CRX cores.
- In the KRITZ2 results, difference of the C/E values between hot and cold conditions is almost equivalent to those in the UO_2 fueled KRITZ2 cores. The differences are almost same among the results with the different nuclear data libraries.

Fig.3 C/E values of k_{eff} for MOX fueled benchmark cores

5. CONCLUSIONS

Criticality benchmark testing of JENDL-3.3 was performed for 59 experiments in various thermal reactors. From the benchmark results, we can say JENDL-3.3 generally gives better k_{eff} values, compared with JENDL-3.2, JEF-2.2 and ENDF/B-VI (R8). However, further modification of JENDL-3.3 is expected to solve the following problems: 1) systematic underestimation of k_{eff} depending on ²³⁵U enrichment for the cores with low (less than 3wt.%) enriched uranium fueled cores, 2) dependence of C/E value for k_{eff} on neutron spectrum and plutonium composition for MOX fueled cores. These are common problems for all of the nuclear data libraries used in this study.

REFERENCES

- K. Shibata, *et al.*: "Japanese Evaluated Nuclear Data Library Version 3 Revision-3: JENDL-3.3," J. Nucl. Sci. Technol. **39**, 1125, (2002).
- T. Nakagawa, K. Shibata and S. Chiba: "Japanese Evaluated Nuclear Data Library version 3 revision-2: JENDL-3.2," J. Nucl. Sci. Technol. 32, 1259, (1995).
- [3] C. Nordborg and M. Salvatore: "Status of the JEF evaluated data library," Proc. Int. Conf. on Nuclear Data for Science and Technology, Gatlinburg 1994, Vol.2, p.680 (1994).
- [4] Cross Section Evaluation Working Group: "ENDF/B-VI Summary Documentation," BNL-NCS-17541 (ENDF-201) (1991).
- [5] J. Hardy: "A Study of Physics Parameters in Several Water Moderated Lattices of Slightly Enriched and Natural Uranium," WAPD-TM-931 (1970).
- [6] E. Johansson: "Data and Results from KRITZ Experiments on Regular H₂O / Fuel Pin Lattices at Temperatures up to 245 °C," STUDSVIK/NS-90/133, Studsvik AB, Sweden, (1990).
- [7] I. Remec, *et al.*: "OECD/NEA KRITZ-2 UO₂ and MOX Benchmark," Proc. of Int. Conf. PHYSOR2002, 11B-03, Seoul, Korea, 7-10 October, (2002).
- [8] NEA Nuclear Science Committee: "International Handbook of Evaluated Criticality Safety Benchmark Experiments," NEA/NSC/DOC(95)03, September 2002 Edition. (ICSBEP Handbook)
- [9] K. Hibi, *et al.*: "Analysis of MISTRAL and EPICURE Experiments with SRAC and MVP Code Systems," Proc. of Int. Conf. PHYSOR2000.
- [10] T. Yamamoto *et al.*: "Core Physics Experiment of 100% MOX Core: MISTRAL," Proc. of Int. Conf. Global'97, Vol.1, 395 (1997).
- [11] K. Nakajima, et.al.: "Experimental Study on Criticality Accidents Using the TRACY," Proc. of Int. Conf. PHYSOR96, Vol.4, L-83, Mito, Japan, 16-20 September (1996).
- [12] Y. Nakano: "Neutronic Analysis of JRR-4 with Low Enriched Uranium Silicon Dispersion Type Fuel of 3.8g/cm³ Uranium Density," JAERI-Tech 95-002 (1995), and Private communication, (2002).
- [13] T. Mori, M. Nakagawa, "MVP/GMVP: General Purpose Monte Carlo Codes for Neutron and Photon Transport Calculations based on Continuous Energy and Multigroup Methods," JAERI-Data/Code 96-018, (1996) (in Japanese).
- [14] T. Mori, K. Okumura and Y. Nagaya: "Status of JAERI's Monte Carlo Code MVP for Neutron and Photon Transport Problems," Proc. of Int. Conf. MC2000, p.625, Lisbon, 23-26, October, (2000).
- [15] T. Mori, M. Nakagawa and K. Kaneko: "Neutron Cross Section Library Production Code System for Continuous Energy Monte Carlo Code MVP: LICEM," JAERI-Data/Code 96-018, (1996) (in Japanese).
- [16] T. Mori, K. Okumura, Y. Nagaya and M. Nakagawa: "Application of Continuous Energy Monte Carlo Code MVP to Burn-up and Whole Core Calculations Using Cross Sections at Arbitrary Temperatures," Proc. of Int. Conf. M&C'99, Vol.2, p.987, Madrid, (1999).
- [17] K. Okumura and K. Shibata: "Re-evaluation of (n,p) Cross Section of ¹⁴N for JENDL-3.3 and Its Effects to Critical Benchmark Test of STACY Experiments Using 10wt.% Enriched Uranyl Nitrate Solution," p.26 JAERI-Review 2002-005 (2002).