Measurement of Cross Sections of the ²¹⁰Po Production Reaction by keV-Neutron Capture of ²⁰⁹Bi

Kosuke SAITO, Masayuki IGASHIRA, Toshiro OHSAKI, Toru OBARA and Hiroshi SEKIMOTO

Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology Meguro-ku, Tokyo 152-8550 e-mail: kosuke@nr.titech.ac.jp

The cross sections of the ²⁰⁹Bi(n,γ)²¹⁰gBi reaction were measured in the keV-neutron region, using an activation method with the detection of α rays from ²¹⁰Po. Pulsed keV neutrons were generated from the ⁷Li(p,n)⁷Be reaction by a 1.5-ns bunched proton beam from the 3-MV Pelletron accelerator of the Research Laboratory for Nuclear Reactors at the Tokyo Institute of Technology. The ²⁰⁹Bi samples were metallic bismuth evaporated on a gold backing. After sample irradiation, the 412-keV γ rays from the gold backing were measured with an HPGe detector, and then the α rays from ²¹⁰Po nuclei in the bismuth sample were measured with a Si surface barrier detector. The derived cross sections were 1.9 ± 0.4 mb and 0.62 ± 0.14 mb at the average neutron energies of 30 keV and 534 keV, respectively. The present value at 30 keV is in agreement with the previous measurement at 24 keV of Booth *et al.*, but about a quarter of the evaluation of JENDL Activation cross section File. The present result at 534 keV is the first experimental one around 500 keV, and is about a half of the evaluation of JENDL Activation cross section File.

1. Introduction

The Lead-Bismuth Eutectic Coolant (LBEC) attracts a great deal of attention in the research fields of fast breeder reactors and accelerator driven systems because of its advantages such as chemical inertness, high boiling point, low neutron moderation, etc. However, the α -emitter of ²¹⁰Po with the half-life of 138 d is produced in LBEC through the ²⁰⁹Bi(n, γ)²¹⁰gBi

Fig. 1 Simplified decay scheme after neutron capture of ²⁰⁹Bi

reaction and the following β^- decay of ²¹⁰gBi with the half-life of 5.01 d. **Figure 1** shows a simplified decay scheme after the neutron capture of ²⁰⁹Bi. The radioactivity of ²¹⁰Po causes a problem when maintaining a system with LBEC. Moreover, as seen from Fig. 1, ^{210m}Bi with the half-life of 3.04 × 10⁶ y is produced through the competitive neutron capture reaction of ²⁰⁹Bi(n, γ)^{210m}Bi. Such a long-live nuclide continuously accumulates in proportion to neutron irradiation time, which will bring about an important problem on nuclear wastes. Therefore, the ²¹⁰Po and ^{210m}Bi production cross sections, *i.e.* the ²⁰⁹Bi(n, γ)^{210g}Bi and ²⁰⁹Bi(n, γ)^{210m}Bi reaction cross sections, are very important to evaluate the radioactivity of ²¹⁰Po and ^{210m}Bi in a system with LBEC.

In astrophysics, ²⁰⁹Bi is the end point of S-process nucleosynthesis in stars and its keV neutron capture cross sections are important for the study on the nucleosynthesis. In nuclear physics, the cross sections are important for understanding the keV-neutron capture reaction mechanism.

In the present study, from the above viewpoints, the ²¹⁰Po production cross sections in the keV-neutron region were measured with an activation method, and then the ^{210m}Bi production cross sections were determined from the differences between the total capture cross sections of ²⁰⁹Bi and the ²¹⁰Po production cross sections.

2. Experimental Procedure

The experiments were performed, using the 3-MV Pelletron accelerator of the Research Laboratory for Nuclear Reactors at the Tokyo Institute of Technology. Pulsed keV neutrons were generated from the ⁷Li(p,n)⁷Be reaction by a 1.5-ns bunched proton beam from the Pelletron accelerator. The incident neutron spectrum on a ²⁰⁹Bi sample was measured by means of a Time-Of-Flight (TOF) method with a ⁶Li-glass scintillation detector. Each ²⁰⁹Bi sample was metallic bismuth evaporated on a gold backing whose diameter and thickness were 15 mm and 0.1 mm, respectively. The thickness of the bismuth layer is about 5 µm. The sample was located at a distance of 2 or 5 cm from the neutron source and at an angle of 0 ° with respect to the proton beam axis. The irradiation time was 40 to 60 h. After each irradiation, the 412-keV γ rays from the gold backing were measured for 3 d with an HPGe detector with the relative efficiency of 100 %, and then the α rays from ²¹⁰Po nuclei in the bismuth sample were measured with a Si surface barrier detector for several months.

3. Data Processing

Figure 2 shows a normalized incident neutron energy spectrum, $\eta(E_n)$, which was derived from a TOF spectrum observed with the ⁶Li-glass detector. An average capture cross section of ¹⁹⁷Au, $\langle \sigma_{Au} \rangle$, was defined as follows, using $\eta(E_n)$:

$$<\sigma_{Au}>=\int\sigma_{Au}(E_n)\eta(E_n)dE_n$$
,

where $\sigma_{Au}(E_n)$ is the standard capture cross section of ¹⁹⁷Au taken from ENDF/B-VI[1] and is shown in Fig. 2. The decay curve of radioactivity of ¹⁹⁸Au was obtained from the measurement of 412-keV γ rays, and the radioactivity, A, at the end (t' = 0) of neutron irradiation was determined from the decay curve. Then, the neutron flux, ϕ , was obtained from the following relation:

(1)

Fig. 2 Normalized incident neutron spectrum at the 534 keV experiment and the standard capture cross sections of ¹⁹⁷Au

$$A = N < \sigma_{Au} > \phi(1 - e^{-\lambda I_{irr}}),$$
 (2)

where λ is the decay constant of $^{198}\mbox{Au},$

N the number of $^{197}\mbox{Au}$ nuclei, and $T_{\rm irr}$ the irradiation time.

The number of ²¹⁰Po nuclei was obtained by solving the following differential equations:

$$\frac{dN_{Bi}(t)}{dt} = n < \sigma > \phi - \lambda_{\beta} N_{Bi}(t), \qquad (3)$$
$$\frac{dN_{Po}(t)}{dt} = \lambda_{\beta} N_{Bi}(t) - \lambda_{\alpha} N_{Po}(t), \qquad (4)$$

in the period of irradiation, and after irradiation,

$$\frac{dN_{Bi}(t')}{dt'} = -\lambda_{\beta} N_{Bi}(t'), \qquad (5)$$

$$\frac{dt' P_{o}(t')}{dt'} = \lambda_{\beta} N_{Bi}(t') - \lambda_{\alpha} N_{Po}(t'), \qquad (6)$$

ere N_{Bi} and N_{Po} are the numbers of ²¹⁰gBi and ²¹⁰Po nuclei, respect

where N_{Bi} and N_{Po} are the numbers of ²¹⁰gBi and ²¹⁰Po nuclei, respectively, n the number of ²⁰⁹Bi nuclei, λ_{β} and λ_{α} the decay constants of ²¹⁰gBi and ²¹⁰Po, respectively, and $\langle \sigma \rangle$ the average cross section for the ²¹⁰Po production. Assuming that ϕ and n were constant, these equations were solved and the α activity of ²¹⁰Po after irradiation, $A_{Po}(t') = \lambda_{\alpha} N_{Po}(t')$, was obtained as follows:

$$A_{Po}(t') = n < \sigma > \phi \frac{\lambda_{\alpha}}{\lambda_{\alpha} - \lambda_{\beta}} \left\{ (1 - e^{-\lambda_{\beta} T_{irr}}) e^{-\lambda_{\beta} t'} - \frac{\lambda_{\beta}}{\lambda_{\alpha}} (1 - e^{-\lambda_{\alpha} T_{irr}}) e^{-\lambda_{\alpha} t'} \right\}.$$
 (7)

By comparing Eq.(7) with the growing and decaying curve of the α activity of ²¹⁰Po obtained from the measurement of α rays, the cross section, $\langle \sigma \rangle$, was derived with the α -ray detection efficiency, ε , described below. The ²⁰⁹Bi samples had medium thickness (about 5 μ m) in comparison with the range (about 15 μ m) of 5.3-MeV α rays from ²¹⁰Po. A thin sample might be better than the present medium sample to make α -ray spectroscopy with good energy resolution, but it must have the disadvantage of poor statistics. In contrast, a thick sample might have the advantage of good statistics, but it must cause continuous α -ray spectra whose shapes depend on the surface condition of thick sample. From the above

Fig. 3 Comparison between simulated and measured α-ray spectra

consideration, the medium thickness was chosen in the present study. Monte-Carlo simulation was performed to check the sample thickness and determine the α -ray detection efficiency. **Figure 3** shows the simulated and measured α -ray spectra at the 534-keV experiment. The simulated spectrum is in good agreement with the measured one.

The ^{210m}Bi production cross sections were determined as the differences between the ²¹⁰Po production cross sections and the corresponding total capture cross sections which were previously measured by a prompt γ -ray detection method in our laboratory.

4. Results and Discussion

The derived ²¹⁰Po and ^{210m}Bi production cross sections are listed in **Table 1**, and are compared with a previous measurement[2] and the evaluation of JENDL Activation cross section File (JENDL/A-96)[3] in **Fig. 4**. The present result of the ²¹⁰Po production cross section at 30 keV is in agreement with the previous measurement at 24 keV of Booth *et al.*[2], but is about a quarter of the evaluation of JENDL/A-96. Booth *et al.* adopted a double ratio-comparison method with the standard of ¹²⁷I, using a Sb-Be photoneutron source for the 24-keV neutrons and a reactor neutron source for the thermal neutrons. They detected the β -rays from ²¹⁰gBi and ¹²⁸I, separately. The present result of the ²¹⁰Po production cross section at 534 keV is the first experimental one around 500 keV, and is about a half of the evaluation

Table 1 Stor 0 and stom Di production cross sections		
Neutron Energy	Cross Sectrions (mb)	
(keV)	²¹⁰ Po	^{210m} Bi
30	1.94 ± 0.39 (20%)	0.65 ± 0.40 (61%)
534	0.62 ± 0.14 (22%)	0.76 ± 0.16 (21%)

 Table 1
 210Po and 210mBi production cross sections

of JENDL/A-96. As for the ^{210m}Bi production cross section, the present result at 30 keV is about one third of the evaluation of JENDL/A-96. The present result at 534 keV is in agreement with the evaluation of JENDL/A-96 within the error, but this agreement seems to be accidental. **Figure 5** shows the branching ratios derived from the present results and the evaluations of JENDL/A-96. The branching ratios derived from the present results are smaller than those from the evaluations by about 30 to 50 %, but both the neutron-energy dependences seem to agree with each other.

5. Conclusion

The ²¹⁰Po and ^{210m}Bi production cross sections were derived at the average incident neutron energies of 30 and 534 keV. The derived cross sections were a half to a quarter of the evaluated values of JENDL/A-96 except for the ^{210m}Bi production cross section at 534 keV. The branching ratios derived from the present cross sections were smaller than those from the JENDL/A-96 by about 30 to 50 %, but both the neutron-energy dependences were similar.

The present results are important for the evaluation of radioactivity of ²¹⁰Po and ^{210m}Bi produced in a system with LBEC. The present small values for the ²¹⁰Po production cross sections might relieve the ²¹⁰Po problem of LBEC.

References

[1] "ENDF/B-VI data file for ¹⁹⁷Au(MAT=7925)," evaluated by Young, P.G. (1984).

[2] Booth, R., Ball, W.P., MacGregor, M.H.: Phys. Rev., 112, 226 (1958).

[3] JENDL Activation cross section File 96(JENDL/A-96) for ²⁰⁹Bi, evaluated by Yamamuro, N. (1989).