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 Integral tests of neutron and gamma-ray production data for cross-section libraries based 
on the Japanese Evaluated Nuclear Data Library, Version 3.3 (JENDL-3.3) have been 
performed by using shielding benchmarks.  An evaluation scheme for shielding benchmark 
analysis established in Japanese Nuclear Data Committee (JNDC) was applied to the integral 
test for medium-heavy nuclei such as Oxygen, Sodium, Aluminum, Silicon, Titanium, 
Vanadium, Chromium, Iron, Cobalt, Nickel, Copper, Zirconium, Niobium, Molybdenum, 
Tungsten and Mercury.  Calculations were made based on a continuous-energy Monte Carlo 
code MCNP4C and multi-group discrete ordinates codes ANISN, DORT and TORT.  
Calculations with JENDL-3.2, ENDF/B-VI, EFF-2, FENDL-1 and FENDL-2 were also 
made for comparison.  The results of JENDL-3.3 were generally satisfactory and the 
cross-section libraries generated with JENDL-3.3 were verified to shielding applications for 
fission and fusion reactors. 
 
 

1.  Introduction 
 The latest Japanese Evaluated Nuclear Data Library, Version 3.3 (JENDL-3.3) was released on May 2002.  
The Shielding Integral Test Working Group in the Japanese Nuclear Data Committee (JNDC) has been in charge 
of verification work for JENDL-3.3 through shielding benchmark tests. Recently, a point-wise cross-section 
library, FSXLIB-J33, and a multi-group library, MATXS-J33 were produced by Japan Atomic Energy Research 
Institute (JAERI) and Sumitomo Atomic Energy (SAE).1)  In order to verify the cross-section libraries based on 
JENDL-3.3, integral tests with shielding benchmarks have been performed for medium-heavy nuclei such as 
Oxygen, Sodium, Aluminum, Silicon, Titanium, Vanadium, Chromium, Iron, Cobalt, Nickel, Copper, Zirconium, 
Niobium, Molybdenum, Tungsten and Mercury.  An evaluation scheme2) established in JNDC was adopted in 
the present study. 
2.  Evaluation Scheme 
 For the integral test of cross sections by using shielding benchmarks, we should select appropriate integral 
measurements of different types. In the present study, we selected a number of spectrum measurements listed in 
Table 1 that were characterized as having high sensitivity to the nuclear data of interest. For calculation, we used 
a continuous-energy Monte Carlo code MCNP4C3) and multi-group discrete ordinates codes ANISN4), DORT5) 
and TORT6). A systematic analysis procedure was introduced to specify the accuracy and definite problems for 
typical reactions of nuclear data when discrepancy was found between calculation result and measurement. 
Calculations with JENDL-3.27), ENDF/B-VI8), EFF-29), FENDL-110) and FENDL-211) were also made for 
comparison. 
3.  Results and Discussions 
1. Oxygen 
 A JAERI-FNS benchmark result for liquid oxygen measured at 0 degree from 20 cm penetration is shown in 
Fig. 1. The neutron spectrum calculated with JENDL-3.3 shows a good agreement with experiment, and it is 
improved compared with JENDL-3.2. Gamma-ray spectrum measurement at FNS for LiAlO2 is shown in Fig. 2. 
The gamma-ray peaks from discrete inelastic reactions are well reproduced with JENDL-3.3, while a peak 
around at 6 MeV is missing in JENDL-3.2. 
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2. Sodium 
 For thick neutron penetration problems, JASPER IVFS-IC/Pb.9 and IHX-IB/Pb benchmarks are shown in 
Figs. 3 and 4, respectively. The results with JENDL-3.3 indicate a good agreement with both measurements, 
while results with ENDF/B-VI show overestimation compared with experiments in the energy range below 1.5 
MeV. The difference is attributed to inelastic reactions based on the sensitivity analysis. 
3. Iron 
 For relatively thin neutron transmission benchmarks, we selected KfK and NIST experiments from iron 
spheres with a 252Cf source in the center. The result is shown in Fig. 5 for the KfK iron sphere of 40 cm in 
diameter. Neutron spectrum calculated with MCNP4C shows good agreement except for resonance minima 
below 400 keV, but a good agreement is generally obtained between calculation and measurement. Figure 6 
shows the result of the NIST iron sphere of 50.7 cm in diameter. The result with JENDL-3.3 is similar to that 
with JENDL-3.2, however JENDL-3.3 indicates slightly larger than that of ENDF/B-VI in the energy range 
between 1.6 and 2 MeV. This tendency also appears in the KfK benchmark. 
 For relatively thick neutron penetration benchmarks, we adopted ASPIS and FNS experiments. Figure 7 
shows comparison between calculated results and the ASPIS measurement at 113.98-cm depth of iron slabs. 
Figure 8 indicates comparisons between calculated results with MCNP4C/DORT and the FNS measurement at 
81-cm depth of large iron cylinder. In these benchmarks, neutron fluxes calculated with JENDL-3.3 in the energy 
range between 0.7 and 1 MeV are slightly underestimated compared with experiments. On the contrary, results 
with ENDF/B-VI are much better in this energy region. Two calculation results with DORT and MCNP4C show 
the same flux profile, so that we recommend improvement should be made in the energy range. For lower energy 
region below the 24 keV s-wave resonance, JENDL-3.3 slightly indicates overestimation compared with 
measurement as shown in Fig. 8. The calculation to experimental (C/E) ratio integrated over between 1 and 1000 
eV is relatively large for JENDL-3.3, whereas the C/E deviations with JENDL-3.3 at each measured position are 
relatively smaller than those with another libraries. 
 For gamma-ray production benchmarks, we employed KfK and FNS measurements. The results with 
JENDL-3.3 indicate good agreement with measurements as shown in Figs. 9 and 10, and the results are better 
than those with JENDL-3.2. 
3. Vanadium 
 Figures 11 and 12 show neutron and gamma ray benchmarks performed by FNS, respectively. Neutron flux 
calculated with JENDL-3.3 shows underestimation below 1 keV, while it makes better compared with 
JENDL-3.2 as shown in Fig. 11. In the energy region above 20 keV, a good agreement is generally obtained 
except between 0.1 and 1 MeV. For gamma-ray production data, JENDL-3.3 is improved from JENDL-3.2 as 
shown in Fig. 12. 
4. Tungsten 
 Neutron flux measurements of FNS and OKTAVIAN are shown in Figs. 13 and 14, respectively. Neutron 
spectrum above 150 keV is slightly underestimated compared with the FNS experiment. For leakage gamma-ray 
measurements of FNS and OKTAVIAN, the profile of photon flux is generally acceptable compared with 
JENDL-3.2 as shown in Figs. 15 and 16. 
5. Mercury 
 Neutron flux measurement of FNS is shown in Fig. 17. Neutron spectra at thickness of 7 and 14 cm are 
generally acceptable while the calculated values slightly show underestimation. Gamma-ray heating rate 
measurement of FNS indicates underestimation as shown in Fig. 18. 
6. Titanium and Niobium 
 Neutron flux measurements of OKATVIAN for Titanium and Niobium are shown in Figs. 19 and 20, 
respectively. Neutron spectra show overestimation below 1 MeV. Gamma-ray spectra for Titanium and Niobium 
are generally acceptable as shown in Figs. 21 and 22, respectively. 
7. Aluminum, Silicon, Chromium, Cobalt, Nickel, Copper, Zirconium and Molybdenum 
 Figures 23 and 24 show the comparisons between calculation and measurement for FNS and OKTAVIAN 
Copper experiments, respectively. The results of JENDL-3.3 are in good agreement with experiments except 
below 1 keV for the FNS benchmark. Comparisons of neutron fluxes between calculations and measurements for 
Aluminum, Silicon, Chromium, Cobalt, Nickel, Zirconium and Molybdenum are similar results to those of 
JENDL-3.2. 
4.  Conclusion 
 Integral tests with the FSXLIB-J33 and the MATXS-J33 libraries based on JENDL-3.3 have been performed 
for Oxygen, Sodium, Aluminum, Silicon, Titanium, Vanadium, Chromium, Iron, Cobalt, Nickel, Copper, 
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Zirconium, Niobium, Molybdenum, Tungsten and Mercury for various shielding benchmarks. The results were 
generally satisfactory and the new libraries would be acceptable for shielding applications for fission and fusion 
reactors. However, some problems in JENDL-3.3 remained, and the improvement should be made in the next 
release of JENDL. 
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Table 1  Shielding Benchmark Experiments for Integral Test of JENDL-3.3* 
Nuclide Benchmark Experiments 

Oxygen FNS 
Sodium SDT4, SDT12, JASPER (IVFS-IC/Pb.9, IHX-IB/Pb) 
Aluminum OKTAVIAN, IPPE 
Silicon OKTAVIAN 
Titanium OKTAVIAN 
Vanadium FNS 
Chromium OKTAVIAN 
Iron SDT1, SDT11, FNS, ASPIS, KfK, NIST 
Cobalt-59 OKTAVIAN 
Nickel (include SS) IPPE, ORNL, FNS 
Copper OKTAVIAN, FNS 
Zirconium OKTAVIAN 
Niobium OKTAVIAN 
Molybdenum OTRAVIAN 
Tungsten OKTAVIAN, FNS 
Mercury FNS 

          * Benchmarks adopted in this study are referred in elsewhere.12) 
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 Fig. 9 Results of KfK Iron benchmark. Fig. 10 Results of FNS Iron benchmark. 
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Fig. 11 Results of FNS Vanadium benchmark. Fig. 12 Results of FNS Vanadium benchmark.
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 Fig. 13 Results of FNS Tungsten benchmark. Fig. 14 Results of OKTAVIAN Tungsten benchmark.
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Fig. 19 Results of OKTAVIAN Titanium benchmark. Fig. 20 Results of OKTAVIAN Niobium benchmark. 
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 Fig. 21 Results of OKTAVIAN Titanium benchmark. Fig. 22 Results of OKTAVIAN Niobium benchmark. 
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Fig. 23 Results of FNS Copper benchmark. Fig. 24 Results of OKTAVIAN Copper benchmark. 
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