Reliability of prompt γ -ray intensities for the measurement of neutron capture cross sections.

Itaru Miyazaki¹, Toshiaki Shimizu¹, Michihiro Shibata², Akihiro Taniguchi³, Kiyoshi Kawade¹, Hitoshi Sakane⁴, Kazuyoshi Furutaka⁴, Hideo Harada⁴

> ¹Department of Energy Engineering and Science, Nagoya University ²Radioisotope Research Center, Nagoya University ³Research Reactor Institute, Kyoto University ⁴Japan Nuclear Cycle Development Institute e-mail: i-miyazaki@ees.nagoya-u.ac.jp

We verified a new measuring method of cross sections for the thermal neutron capture detecting prompt γ -rays (the prompt- γ method). There was a tendency for measured cross section values by using the prompt- γ method to be smaller than those by using the activation method. The ratios, of measured cross section values by the prompt- γ method to those by used the activation method, are lower systematically from 1.0 ($\sigma_{\text{prompt}}=\sigma_{\text{decay}}$). It is considered the disagreement is caused by inaccuracy of the emission probabilities of prompt γ -rays. Because precision of emission probabilities is not enough, the new method cannot determine cross sections within 10%. It is necessary to measure precise emission probabilities of prompt γ -rays in (n, γ) reactions when we use the method.

1. Introduction

Cross sections for the neutron capture of long-lived fission products are needed for a nuclear transmutation technology. When we want to determine the cross sections, we utilize the activation method [1]. This method uses γ -rays following β -decay. If produced nuclei have too long half-lives or are stable, the utilization of the activation method is difficult or impossible. A measuring method by detecting prompt γ -rays (the prompt- γ method) is expected to solve this problem. The method doesn't depend on half-lives.

It is considered that the comparison of the prompt- γ method with the activation method, which has reliable actual results, can verify the new method. Therefore we measured the cross sections by using the prompt- γ method and the activation method. Then, these two measured cross section values were compared.

2. Experiment

Thermal neutron irradiations were carried out by the supermirror neutron guide tube (neutron flux $5 \times 10^7 \text{ n/cm}^2 \cdot \text{s}$) at the Kyoto University Reactor [2]. Used detectors were 22, 38 and 90% HPGe detectors and a 90% GAMMA-X HPGe detector. The distance from a sample to the detector was 5 cm. Target nuclides were ²³Na, ²⁷Al, ⁵¹V, ⁵⁵Mn, ⁶⁴Ni, ⁶⁵Cu, ¹⁴¹Pr, ¹⁸⁶W and ¹⁹⁷Au. (Table 1) Measured reactions were selected by following five points; (1)Induced activities for the neutron capture have short half-lives enough to measure efficiently. (2)The emission probability of that γ -ray is large. (3)The cross section for the neutron capture is large, 0.2 to 1 b. (4)Abundance of the isotope of interest is large. Those points are important for an efficient measurement of cross section. (5)Lists of prompt γ -rays from the (n, γ) reactions are well known.

The schematic view of measuring processes was shown in Fig. 1. When the sample was irradiated, first γ -ray measurement was carried out simultaneously. The measurement was detecting prompt and β -decay γ -rays. Then, the irradiation stopped and the second measurement was carried out. The measurement was only detecting β -decay γ -rays. A box and plates made of a lithium fluoride (⁶LiF) were used for shielding from neutrons. (Fig. 2) Because of those shields, the neutrons were activated surrounding materials including the detectors. A shutter made of a lithium fluoride stopped the irradiation. (Fig. 3) During no irradiation, leak of neutrons was smaller than 0.6%. (Fig. 4)

3. Results

For nine reactions, ratios of measured cross section values by the prompt- γ method to those by used the activation method were evaluated. The ratio is

$$Ratio = \frac{\sigma_{prompt}}{\sigma_{decay}} = \frac{\frac{Count_{prompt}}{I_{prompt}} \cdot \varepsilon_{prompt}}{\frac{Count_{decay}}{I_{decay}} \cdot \varepsilon_{decay}}$$

4. Conclusion

We have concluded that the prompt- γ method cannot determine (n, γ) cross section within 10% because precise emission probabilities are not well known at present. Additionally, using more precise emission probabilities of γ -rays following β -decay, those of prompt γ -rays can be determined.

Using the prompt- γ method, we will determine the cross section of ${}^{104}Pd(n, \gamma)$ reaction which cannot be measured by using the activation method. We are going to construct the precise level scheme of ${}^{104}Pd(n, \gamma){}^{105}Pd$. We will gain the emission probabilities of the prompt γ -rays by balancing intensity of γ -rays at each level.

Acknowledgements

We would like to thank the operators at the Kyoto University Reactor for the neutron irradiation.

References

- [1] K. Kawade, et al., Nuclear Instruments and Methods in Physics Research, A496 (2003) 183-197.
- [2] T. Akiyoshi, et al., Journal of Nuclear Science Technology, Vol. 29, No. 10 (1992) 939-946.
- [3] R.B. Firestone and V.S. Sirley, John Wiley & Sons, New York (1996).
- [4] T.A.A. Tielens, et al., Nuclear Physics A403 (1983) 13-27
- [5] H.H. Schmidt, et al., Physics Review C Vol. 25, No. 6 (1982) 2888-2901.
- [6] S. Michaelsen, et al., Z. Physik A Hadrons and Nuclei 338 (1991) 371-387.
- [7] H. Miyahara, et al., Nuclear Instruments and Methods in Physics Research Sect. A Vol. 324, No. 1/2 (1993) 219-222.
- [8] N. Marnada, et al., Journal of Nuclear Science and Technology, Vol. 36, No. 12 (1999) 1119-1124.

Reaction	Abundance	Chemical form	T _{1/2}	E_{γ} (Decay)	I_{γ}
23 Na(n, γ) 24 Na	100	NaF	14.95h	1368.6	1
27 Al(n, γ) 28 Al	100	Al	2.241min	1779.0	1
51 V(n, γ) 52 V	99.8	V_2O_5	3.743min	1434.1	1
55 Mn(n, γ) 56 Mn	100	Mn	2.578h	846.8	0.9887
64 Ni(n, γ) 65 Ni	97.9(SI)	Ni	2.517h	1481.8	1
65 Cu(n, γ) 66 Cu	99.6(SI)	CuO	5.088min	1039.3	1
$^{141}\Pr(n, \gamma)^{142}\Pr(n, \gamma)^{142}$	100	Pr_6O_{11}	19.12h	1575.9	0.037
$^{186}W(n, \gamma)^{187}W$	97.5(SI)	WO ₃	23.72h	479.5	0.218
197 Au(n, γ) 198 Au	100	Au	2.695d	411.8	0.9558

 Table 1
 List of reactions and samples

Fig. 1 The schematic view of the measuring process. "Measurement 1" was detecting prompt γ -rays including decay γ -rays. "Measurement 2" was detecting only decay γ -rays.

Fig. 2 The schematic view of the present experiment arrangement. The combination of "Detector 1" and "Detector 2" were 22% and 38% HPGe, or 90% HPGe and 90% GAMMA-X HPGe. Distance from sample to each detector was 5 cm.

Fig. 3 The schematic view of the beam shutter and the target Box. The shutter moving down made the irradiation stop.

Fig. 4 Spectra for capture of thermal neutron in ¹⁹⁷Au. "On beam" and "Off beam" were switched by using a shutter made of ⁶LiF. It is clearly seen that the γ -rays from the ¹⁹⁷Au(n, γ)¹⁹⁸Au reaction can be observed at "On beam" and cannot at "Off beam". It is considered that effects of the leaking neutrons are <0.6% at "Off beam".

Fig. 5 The ratio of σ used prompt γ -rays to σ used β -decay γ -rays. Used detector was the 22% HPGe detector. It is clearly seen that the ratios are lower systematically than 1.0 $(\sigma_{prompt}=\sigma_{decay})$. The plot of ¹⁸⁶W are differentiated from the others because the values of emission probabilities of ¹⁸⁶W(n, γ)¹⁸⁷W is evaluated values.