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Coupled-channels optical model code ”OPTMAN” with coupling built on wave functions
of the Soft-rotator nuclear Hamiltonian was completely modernized to be a base for high
energy nuclear data evaluation. It was used to analyze experimental nucleon optical interac-
tion data with A=24-122 mass nuclides. We found that all the available experimental data
(total cross sections, angular distributions of elastically and inelastically scattered nucleons
and reaction cross sections) for these nuclides can be described with good accuracy using
smooth A-mass dependencies of optical potential values while imaginary volume potential
geometry was considered to be equal real potential one, with individual properties of the nu-
clides accounted by individuality of the nuclear Hamiltonian parameters, Fermi energies and
deformations.

1. Introduction
For more than twenty years an original coupled-channels optical model code OPTMAN

has been developed at Joint Institute of Energy and Nuclear Research to investigate neutron-
nucleus interaction mechanisms and as a basic tool for evaluation of reactor oriented nuclear
data. Results of such activities for, e.g., 235U, 239Pu, 236U, 233 U, 238Pu etc., were included in
evaluated Nuclear Data Library BROND[1] of former Soviet Union. Except for the standard
rigid rotator and harmonic vibrator coupling scheme encoded in widely-used JUPITER[2] and
ECIS[3] codes, level-coupling schemes based on a non-axial soft-rotator model are possible for
the even-even nuclei in OPTMAN. This allows account of stretching of soft nuclei by rotations,
which results in change of equilibrium deformations for excited collective states compared with
that of the ground state. This is a critical point for reliable predictions[4, 5, 6] based on the
coupled-channels method.

In 1997 in the framework of ISTC Project CIS-03-95, Financial Party of which was Japan,
OPTMAN code was installed at Nuclear Data Center of Japan Atomic Energy Research In-
stitute (JAERI) and an active collaboration started. After that time, many new options were
added to the code following demands from a broad range of applications: power reactors,
shielding design, radiotherapy, transmutations of nuclear wastes and nucleosynthesis.

Here we describe the activity performed under the Project Agreement B-521 of the Inter-
national Science and Technology Center (Moscow). The work was requested by JAERI and is
the result of a close cooperation between scientists from Joint Institute of Energy and Nuclear
Research and JAERI.



2. Soft-Rotator Nuclear Model Coupled Channels and Optical Potential
Form for Global Search

Soft-rotator nuclear model and its application to coupled-channels optical model calcu-
lations is described elsewhere[7]. We assume that the low-lying excited states observed in
even-even non-spherical nuclei can be described as a combination of rotation, β-quadrupole
and octupole vibrations, and γ-quadrupole vibration. Instant nuclear shapes that correspond
to such excitations can be presented [8, 9] in a body fixed system:

R(θ′, ϕ′) = R0
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The Hamiltonian Ĥ of the soft-rotator model consists of the kinetic energy term for the
rotation of the non-axial nuclei with quadrupole, hexadecapole and octupole deformations, the
β2-, γ-quadrupole and octupole vibrations, and the vibrational potentials ignoring a coupling
between the three vibration modes [5]:
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The symbol T̂r denotes the operator of deformed nuclear rotational energy expressed in terms
of the angular momentum operator and principal moments of inertia
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Here, J
(λ)
i stands for the principal moments of inertia in the direction of the i-th axis in the

body-fixed system due to quadrupole, octupole and hexadecapole deformations depending on
λ=2, 3 and 4 respectively. The symbol Îi denotes the projection of the angular momentum
operator on the i-th axis of the body-fixed coordinate, β20 -the quadrupole equilibrium defor-
mation parameter at the ground state (G.S.) and Bλ -the mass parameter for multipolarity
of λ. The eigenfunctions Ω of the collective energy operator are defined in the space of six
dynamical variables: 0 ≤ β2 < ∞, −∞ < β3 < ∞, nπ

3 ≤ γ ≤ (n+1)π
3 , 0 ≤ θ1 ≤ 2π, 0 ≤ θ2 ≤ π

and 0 ≤ θ3 < 2π with the volume element dτ = β4
2β3

3 | sin 3γ|dβ2dβ3dγdθ1 sin θ2dθ2dθ3. Here
β2

λ =
∑

βλµβ∗λµ is the measure of nucleus deformation with multipolarity λ. Below we consider
nuclei that are hard with respect to octupole transverse and hexadecapole vibrations. So the
current version of soft-rotator model of OPTMAN takes into account the non-axial quadrupole,
octupole and hexadecapole deformations, and β2, β3 and γ−vibrations with account of nuclear
volume conservation.

By giving suitably an initial assignment of quantum numbers to low-lying levels, we can
adjust the nuclear Hamiltonian parameters to describe low-lyinng experimental levels (usually
first levels of 3-4 rotational bands plus levels of the first negative parity rotational band).
Example of such level description for 28Si is demonstrated in Fig. 1.



Multipoles of deformed nuclear potential, with evident dependencies of deformations, nec-
essary to built coupling appear from deformed nuclear radii, is given as follows by considering∑

λµ βλµYλµ(θ′, ϕ′) small
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The optical nuclear potential was taken to be a standard form:
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with the form factors given as

fi = [1 + exp (r −Ri) /ai]
−1 , Ri = riA

1/3.

The symbols i = R, V,D and so denote the real volume, imaginary volume, imaginary surface
and spin-orbit potentials respectively. One can see, that imaginary volume and imaginary
surface potential form factors were considered to be equal.

In case of expansion of Coulomb potential VC(r) with evident dependences on deformations,
necessary to account deformations dynamics, we follow the suggestion of Satchler et al. [10],
using a multipole expansion of the Coulomb potential VC(r) for charged ellipsoid with a uniform
charge density within the Coulomb radius RC and zero outside with some modifications (see
[7, 11]).

In the mean time, energy dependence of the optical potential has been continuously im-
proved guided by physical principles. Now, such features as the high-energy saturation behav-
ior consistent with Dirac phenomenology, relativistic generalization of Elton and Madland, and
properties stemming from the nuclear matter theory are taken into consideration[12].
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Here, E∗ = (Ep− Efm), with Ep - energy of the projectile and Efm - the Fermi en-
ergy, determined as Efm(Z, A) = −1

2 [Sn(Z,A) + Sn(Z,A + 1)] for neutrons and Efm(Z, A) =
−1

2 [Sp(Z, A) + Sp(Z + 1, A + 1)] for protons, where Si(Z,A) denotes the separation energy of
nucleon i from a nucleus labeled by Z and A, while Z ′, Z and A are charges of incident par-
ticle, nucleus and nucleus mass number, respectively. As we intend to analyze neutron and



proton scattering data simultaneously, we want to have a unique optical potential for nucleons
with form suggested by [12] with a term CcZZ ′/A1/3 · ϕc(E∗) describing the Coulomb correc-
tion to the real optical potential and isospin terms (−1)Z′+1Cviso(A − 2Z)/A · ϕviso(E∗) and
(−1)Z′+1Cwiso(A− 2Z)/A ·ϕwiso(E∗). We assumed that energy dependencies of ϕviso(E∗) and
ϕwiso(E∗) are the same as those of real and imaginary surface potentials, while ϕc(E∗) were
considered to be the minus derivative of real potential , so that
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All the parameters were taken to be equal for neutrons and protons. We assume that Lane
model [13] works, therefore the neutron-proton optical potential difference of the suggested
potential stems from the isospin terms, the Coulomb correction terms and difference of the
neutron-proton Fermi energies.

Calculations with OPTMAN are now possible both for neutrons and protons as the projec-
tile, and the upper incident nucleon energy is extended to at least 200 MeV[14]. We couple all
the levels considered not only with the ground state level, but between each other as it is shown
on Fig. 2 for 28Si case. With this options, OPTMAN is able to analyze the collective level
structure, E2, E3, E4 γ−transition probabilities and reaction data in a self-consistent manner,
which makes results of such analyses more reliable. We have found that this model was flexible
enough so that OPTMAN can be applied not only to heavy rotational (actined) nuclei[15, 16],
but can be applied very successfully even to a very light nucleus, namely 12C[17, 18] and light
one 28Si[19], and also to vibrational nuclei such as 52Cr[20], 56Fe[21], 58Ni[22].

3. Global Optical Potential Global Search for A=24-122 mass region
As we can account most strongly coupled levels in our CC calculations (we call such

approach as a CC with saturated coupling), our best-fit OMPs are free of errors arising from
unaccount of coupling in spherical case or lack of such coupling in case of standard rotator or
vibrator model is used. Thus, as we get rid of the major nuclear collective structure effects in
OMP now, we can expect to get global OMP systematics with a smooth dependence of OMP
on the mass number.

As the first step to carry out CC optical model calculations, we adjusted soft-rotator
nuclear Hamiltonian parameters to describe experimentally observed low-lying collective lev-
els of 24,26Mg, 28,30Si, 32S, 40Ar, 40Ca, 48Ti, 52Cr, 54,56Fe, 58,60,62Ni, 90,92Zr, 92,94,94,98Mo,
116,118,120,122Sn nuclides, by considering levels with quantum numbers nβ2=0, nγ=0, K=0+(
G.S. band); nβ2=0, nγ=0, K=2+; nβ2=1, nγ=0, K=0+ and nβ2=0, nγ=0, K=0− negative par-
ity bands. Usually we coupled first 6-8 most strongly coupled collective levels. Nuclear wave
functions with adjusted nuclear Hamiltonian parameters were used to built realistic coupling
for coupled-channels calculations The best fit OMP for individual nuclides considered were
found using a search option of OPTMAN code [7, 11] by minimizing the quantity χ2, incorpo-
rating neutron total σtot, proton reaction cross-sections σreac, and elastic and inelastic angular
distributions. All these available experimental observables, if any, were included in χ2 search
criteria. Smooth dependence of OMP for individual nuclides allowed to obtain a global OMP
systematics, which is shown in Table 1. Overall χ2 for all nuclides considered was found to be
about 8, the main contribution to χ2 came from excited levels other than the first 2+

1 one. For
total, elastic scattering and angular distributions with the first excited level excitation, it was
usually less than 3.

Figure 3 demonstrates the quality of neutron total and proton nonelastic cross section
predictions. One can see that we face no problems in describing total cross sections, as well
as proton reaction cross sections. Fig. 4 shows the angular distributions of the neutron elastic
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rC = 1.2607 aC = 0.360
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Table 1: The optical potential parameters for 24 ≤ A ≤ 122 allowing the best fit of experimental
data. Potential strengths in MeV; radii and diffusenesses in fm. (*Note that optical potential
strengths except for the spin-orbit and Coulomb terms must be multiplied by a factor K(E) = 2E/(E +
Mpc

2) due to the relativistic generalization, see: Ref. [7, 11].)

scattering for 56Fe and the proton elastic scattering for 90Zr. Fig. 5 shows the angular
distributions for the proton inelastic scattering leading to the first 2+

1 level excitation of 28Si
and to the negative parity 3−1 level excitation of 54Fe. Angular distributions for these levels are
described by our model with high accuracy for all nuclides considered. Analogous or a little
worse quality is for angular distributions with the first 4+

1 or the second 0+
2 level excitation

predictions. Fig. 6 shows prediction of neutron angular distributions for the excitation of the
groups of the levels for 32S and 92Zr.

Finally in Fig. 7 we demonstrate predicted inelastic scattering angular distributions for
24Mg and 122Sn nuclides, which have the lightest and the heaviest mass among the considered
by our global potential search.

Calculations shown in the figures were carried out with deformations equal for neutrons
and protons, while we found that for single-closed-shell nuclei: 52Cr, 54Fe, 58,60,62Ni, 92Zr,
92Mo and 116,118,120,122Sn, deformations allowing best fit are greater for the probe for which the
corresponding shell of the interacting nuclei is closed. Account of difference of the deformation
parameters for incident neutron and proton may improve χ2 by about 30%. This feature is
consistent with the nuclear theory predictions [23].

4. Conclusion
We developed CC code OPTMAN within Soft-rotator nuclear model CC approach, allow-

ing to analyze the collective level structure, E2, E3, E4 γ−transition probabilities and reaction
data in a self-consistent manner. We have found that this model was flexible enough so that
OPTMAN can be applied not only to heavy(actinide) nuclei, but can be applied very success-
fully even to a very light nucleus, and also medium weight vibrational nuclei.

Global optical potential for even-even nuclides in A=24 - 122 mass region is suggested.
Expanding below A=24 and above A=122 is in progress
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Sukhovitskĩı, Yu. V. Porodzinskĩı, and Y. Watanabe, Nucl. Phys. A 624, 305 (1997).
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Figure 1: Comparison of the experimental and cal-
culated 28Si level schemes. Thick lines show exper-
imental levels described by the soft rotator model.
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