

即発中性子スペクトルの評価
1. Maxwell分布

$$\chi(E) = \frac{2}{\sqrt{\pi}T_{M}^{2/3}}\sqrt{E}\exp(-\frac{E}{T})$$

基本仮定
1. カスケード蒸発をMaxwell型分布関数で近似
2. 核分裂片が走っていることは考慮せず
3. パラメータは1個のみ:
実効Maxwell温度 $T_{M} = \frac{2}{3}\langle E \rangle$
 $\langle E \rangle =$ 即発中性子の平均エネルギー

2.Watt型分布

$$\chi(E) = \frac{\exp(-E_f/T_w)}{(\pi E_f T_w)} \exp(E/T_w) \sinh[2(E_f E)^{1/2}/T_w]$$
基本仮定
1.核分裂片が走っていることを考慮
ーただし、軽分裂片と重分裂片は区別せず
2.一般にMaxwell型よりデータへの適合は良好
3.パラメータは2個:
 $E_f = 核分裂片運動エネルギー / 核子数$
 $T_W = 実効Watt温度$

3.新しいモデル
a)簡単化核温度分布モデル: Madland-Nixモデル
b)カスケード蒸発モデル: Märten-Seeligerモデル Hu Jimin (胡済民)モデル
c) Hauser-Feshbachモデル Browne-Dietrichモデル Gerasimenkoモデル

核温度の分布
$P(T) = 2T / T_m^2 T \le T_m$
$= 0 \qquad T > T_m$
$\left\langle E^{*}\right\rangle = \left\langle E_{r}\right\rangle + B_{n} + E_{n} - \left\langle E_{f}^{tot}\right\rangle$
$=aT_m^2$
核温度分布にわたって積分した重心系スペクトル
$\Phi(\varepsilon) = \frac{2\sigma_{C}(\varepsilon)\varepsilon}{T_{m}^{2}} \int_{0}^{T_{m}} k(T)T \exp(-\varepsilon/T)dT$
さまざまな温度Tの分裂片から放出される中性子を 積算している

Neutron Energy (MeV)

