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Numerical tests were performed about an effect of a neutron anisotropic scattering on critical-
ity in the Sn transport calculation. The simplest approximation, the consistent P approximation
and the extended transport approximation were compared with each other in one-dimensional
slab fast reactor models. JAERI fast set which has been used for fast reactor analyses is in-
adequate to evaluate the effect because it doesn’t include the scattering matrices and the self-
shielding factors to calculate the group-averaged cross sections weighted by the higher-order
moment of angular flux. In the present study, the sub-group method was used to evaluate the
group-averaged cross sections. Results showed that the simplest approximaton is inadequate
and the transport approximation is effective for evaluating the anisotropic scattering.

I Introduction

A neutron transport equation in a whole core has been usually solved by the discrete ordi-
nate method (Sn method) in the fast reactor analyses in Japan. In the Sn method, a neutron
anisotropic scattering has been considered by the transport approximation, in which the to-
tal cross sections are replaced by the transport cross sections. The transport approximation
makes it possible to evaluate the P1 effect of an anisotropic scattering without an increase of
computational burden in comparison to a calculation with an isotropic scattering. When higher-
order anisotropic scattering is necessary to be considered, the simplest approximation, in which
angular flux is assumed to be separable into the energy-dependent and the angle-dependent
functions, is used. It has not been shown clearly that the these appoximations are adequate for
the evaluation of the neutron anisotropic scattering.

In the present paper, we reviewed the method to evaluate the neutron anisotropic scattering
with some papers(1, 2) and extracted a problem caused by a limitation of the JAERI Fast Set
which has been used in fast reactor analyses in Japan. After that, we showed another approach
to evaluate the anisotropic scattering and carried out numerical tests in simple fast reactor
models.

II Review of Theory

For simplicity, a one-dimensional slab system is considered. A static neutron transport equa-
tion is described as below.

µ
dφ(x, µ,E)

dx
+ Σt(x,E)φ(x, µ,E) = (1)Z

dµ0
Z
dE0φ(x, µ0, E0)Σs(x, µ0 → µ,E0 → E) +Q(x, µ,E)

Scattering cross section can be shown as

Σs(x, µ
0 → µ,E0 → E) = Σs(x, µ0, E

0 → E) (2)



where µ0 means the cosine of the scattering angle. After scattering cross sections and angular
flux are extended by the Legendre polynomials, Eq.(1) is transformed to

µ
dφ(x, µ,E)

dx
+ Σt(x,E)φ(x, µ,E) =

∞X
l=0

2l + 1

4π
Pl(µ)

Z
dE0φl(x,E0)Σs,l(x,E0 → E) +Q(x, µ,E). (3)

When Eq.(3) is averaged within an energy group, total cross section is defined as

Σt,g(x, µ) =

Z
E∈g

Σt(x,E)φ(x, µ,E)dEZ
E∈g

φ(x, µ,E)dE
. (4)

This means that the group-averaged total cross section should be dependent on the angle. Since
it is difficult to apply the angular-dependent total cross section to reactor calculations, several
methods have been described in Ref.(1) and (2).

In the first method, it is assumed that the angular flux can be separated into the energy-
dependent and the angular-dependent functions. Then group-averaged total cross sections can
be calculated by using neutron flux as a weighting function and the cross sections become
independent on the angle. Under the assumption, Eq.(3) can be rewritten as

µ
dφg(x, µ)

dx
+ Σ0t,g(x)φg(x, µ) =

∞X
l=0

2l + 1

4π
Pl(µ)

GX
g0=1

φl,g0(x)Σ
l
s,l,g0→g(x) +Qg(x, µ) (5)

where Σ0t,g(x) means the group-averaged total cross section calculated by using the 0-th moment

of angular flux as a weight and Σls,l,g0→g means the l-th order of scattering cross section calculated
by using the l-th moment of angular flux. In the present paper, this method is refered as ”the
simplest approximation”.

The second method is to extend angular flux in left hand side of Eq.(3) by the Legendre
polynomials. After the extension, Eq.(3) can be rewritten as

µ
dφg(x, µ)

dx
=
∞X
l=0

2l + 1

4π
Pl(µ)

GX
g0=1

φl,g0(x)
h
Σls,l,g0→g(x)− Σlt,g(x)δgg0

i
+Qg(x, µ). (6)

After adding Σg(x)φg(x, µ) to both sides of this equation, Eq.(6) can be rewritten as

µ
dφg(x, µ)

dx
+ Σg(x)φg(x, µ) =

∞X
l=0

2l + 1

4π
Pl(µ)

GX
g0=1

φl,g0(x)

×
h
Σls,l,g0→g(x) + (Σg(x)− Σlt,g(x))δgg0

i
+Qg(x, µ). (7)

When Σg(x) is defined as Σ
0
t,g(x), it is called as ”the consistent P approximation”. If Σ

0
t,g(x) is

assumed to be equal to Σlt,g, Eq.(7) is coincident with Eq.(5).
If we consider the anisotropic scattering up to the PL order in Eq.(7), an ignorance of the

higher-order than PL+1 causes an error. The term of PL+1 is

1

4π
(2L+ 3)PL+1(µ)

GX
g0=1

φL+1,g0
h
ΣL+1s,L+1,g0→g(x) + ((Σg(x)− ΣL+1t,g (x))δgg0

i
. (8)

To minimize the term, an approximation is used.

GX
g0
φL+1,g0Σ

L+1
s,L+1,g0→g(x) ≈

GX
g0
φL+1,gΣ

L+1
s,L+1,g→g0(x) (9)



The cross section Σg(x) can be defined to minimize the error as below.

Σg(x) = Σ
L+1
t,g (x)−

GX
g0=1

ΣL+1s,L+1,g→g0(x) (10)

This is the third method, called as ”the extended transport approximation”.
In the present paper, these described methods, the simplest approximation, the consistent P

approximation and the extended transport approximation, were used to evaluate the anisotropic
scattering in Sn calculations.

III Application

Usually, JAERI Fast Set(JFS) has been used for fast reactor analyses in Japan. JFS in-
cludes the infinite-dilution cross sections, the scattering matrices of the P0 component and the
self-shielding factors. The self-shielding factors are implemented to calculate the flux-weighted
group-averaged cross sections. In addition, the current-weighted group-averaged cross section
can be calculated for only the total reaction because it is necessary to define the transport cross
section in the transport approximation. When we evaluate the anisotropic scattering with the
described methods, it is necessary to evaluate the group-averaged cross section weighted by the
higher-order moment of angular flux. The scattering matrices of the higer order components
were given in the new type of the JFS library under a development in JNC. Therefore, we have
to add ”the higher order moment-weighted” self-shielding factors to the new JFS. But it needs
much works to calculate the self-shielding factors and to reconstract the format of the new JFS.

This problem can be overcome easily by introducing the sub-group method(3). In the sub-
group method, a descritization is carried out with not energy but total cross section. The n-th
order moment of angular flux φn(E) can be expressed as below in the large homogeneous medium
by the BN method.

φn(E) ∝ 1

[Σt(E)]
n+1 (11)

Group-averaged cross section weighted by the n-th order moment, σnx,g, is calculated as

σnx,g =

Z
E∈g

dEσx(E)φn(E)Z
E∈g

dEφn(E)
=

Z
E∈g

dEσx(E)
1

[Σt(E)]
n+1Z

E∈g
dE

1

[Σt(E)]
n+1

=

Z
E∈g

dEσx(E)
1

[σt(E) + σ0]
n+1Z

E∈g
dE

1

[σt(E) + σ0]
n+1

(12)
σ0 means the background cross section. A descritization of Eq.(12) is carried out with the
sub-group method as below.

σnx,g =

BX
b=1

σx,b
Pb

(σt,b + σ0)n+1

BX
b=1

Pb
(σt,b + σ0)n+1

(13)

The sub-group parameters, Pb, σx,b and Σt,b, can be prepared by the MOMENTOF code(4) de-
veloped by Japan Nuclear Cycle Development Institute. The parameters are defined to preserve
the cross section moment(5) in the code. In unresolved resonance energy region, TIMS-1 code(6)
is utilized to make a ”ladder” of resonance.



IV Numerical tests and results

To evaluate the effect of the anisotropic scattering, one-dimensional slab fast reactor models
were constructed. We prepared three homogeneous mediums, fuel, blanket and reflector, whose
number densities are shown in Table 1 and constructed three models using these mediums as
shown in Table 2. Model 1 is a conventional fast reactor, model 2 is a plutnium burning reactor
and model 3 is a heterogeneously blanket-loaded reactor.

Sub-group parameters were prapared with the MOMENTOF code from JENDL-3.2 and σnx,g
was evaluated. An energy group structure was defined the same as JFS. Scattering matrices
implemented in JFS were used. One-dimensional trasport calculations were performed by the
ANISN code(7). One mesh per 2.5 cm was given and the Sn order was set to be 16.

At first, we evaluated a sensitivity of a weighting function used for calculations of group-
averaged scattering cross sections to keff . We used different methods for the calculations. The
”correct” functions described in Eq.(11) were used in one method and the neutron flux was
used commonly in the other method. Results obtained with the simplest approximation and
the consistent P approximation are shown in Table 3. The sensitivity is the largest in a result
of model 2 with the consistent P approximation and a difference between two weight funtions is
100pcm. These results mean that it is adequate to use a neutron flux as a weighting function
approximately for calculation of the higher-order scattering cross sections.

Next, comparisons between the simplest approximation and the consistent P approximation
were carried out. Results are shown in Table 4. Differences are 300pcm in model 1, 130pcm in
model 3 and 1000pcm in model2. These were caused by the approximation to separate angular
flux into energy-dependent and angular-dependent functions and the results showed that the
error should not be ignored. The effects to consider the higher-order anisotropic scattering, a
difference between the results of P1 and P3 calculations, were observed about 50pcm in model
2 and it was not so large.

Comparisons between the consistent P approximation and the extended transport approx-
imation were also carried out. Results are shown in Table 5. Convergences of keff s were
observed in both the approximations as an increase of considered PL order and the converged
values agreed with each other. Differences between keff obtained by the transport approxi-
mation and the converged one are 40pcm in model 1, 60pcm in model 2 and 20pcm in model
3. This results show that the transport approximation is adequate to evaluate the anisotropic
scattering in the analyse of these simple models.

V Conclusion

Several papers were reviewd and numerical tests were performed about a neutron anisotropic
scattering. The simplest approximation, the consistent P approximation and the extended
transport approximation were compared with each other in one-dimensional slab reactor models.
The results showed that the transport approximation, which has been used for fast reactor
analyses in Japan, is adequate for considering the anisotropic scattering. In the present study,
the evaluations were performed in the simple reactor models. Therefore it is necessary to evaluate
the effect in the more realistic model and we are going to perform it.

If the higher-order anisotropic scattering must be considered, the higher-order moment-
weighted group-averaged cross sections are necessary. In the present paper, it is shown to
be adequate to use a neutron flux as a weighting function approximately for calculations of
the higher order scattering cross sections. However, higher-order moment-weighted total cross



sections are necessary because the simplest approximation should not be used. Therefore ”the
higher-order moment-weighted” self-shielding factors for the total reaction should be added to
JFS library. Another candidate to overcome the problem is an introduction of the sub-group
method. The sub-group method is very useful because of the flexibility in an evaluation of an
in-group flux.
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Table 1: Number densities of homogeneous mediums (Unit:1024atoms/cm3)

Fuel Blanket Reflector

U-238 8.4× 10−3 1.4× 10−2
Pu-239 9.6× 10−4
Fe-Nat. 1.1× 10−2 6.2× 10−3 5.3× 10−2
Cr-Nat. 1.9× 10−3 1.7× 10−3 1.5× 10−2
Ni-Nat. 6.7× 10−3
C 1.1× 10−3
O 1.6× 10−2 2.3× 10−3
Na 9.5× 10−3 4.7× 10−3



Table 2: Model configuration (Unit:cm)

Model 1 Model 2 Model 3

Reflective boundary 0 0 0
Fuel region 0-42.5 0-35 0-22, 27.5-50, 55-77.5

Blanket region 42.5-57.5 35-65 22.5-27.5, 50-55, 77.5-92.5
Reflector region 57.5-72.5 - 92.5-107.5
Vacuum boundary 75.2 65 107.5

Table 3: Sensitivity of weighting function of scattering cross section on keff

Model 1 Model 2 Model 3
φ0 φl φ0 φl φ0 φl

Simplest P0 1.02321 1.01773 1.01263
Simplest P1 1.00488 1.00502 0.99904 0.99981 1.00341 1.00346
Simplest P3 1.00514 1.00528 0.99941 1.00017 1.00356 1.00362
Simplest P5 1.00514 1.00528 0.99941 1.00017 1.00356 1.00362

Consistent P1 1.00188 1.00204 0.98899 0.98996 1.00209 1.00215
Consistent P3 1.00217 1.00233 0.98944 0.99040 1.00225 1.00231

Table 4: keff s obtained by the simplest and the consistent P approximation

Model 1 Model 2 Model 3
Simplest Consistent Simplest Consistent Simplest Consistent

P0 1.02321 1.01773 1.01263
P1 1.00502 1.00204 0.99981 0.98996 1.00346 1.00215
P2 1.00528 1.00234 1.00020 0.99041 1.00364 1.00233
P3 1.00528 1.00233 1.00017 0.99040 1.00362 1.00231

P3-P1 (pcm) 26 29 36 44 16 16

Table 5: keff s obtained by the consisntent P and extended transport approximation

Model 1 Model 2 Model 3
Consistent Ext. Trans. Consistent Ext. Trans. Consistent Ext. Trans.

P0 1.02321 1.00275 1.01773 0.99101 1.01263 1.00251
P1 1.00204 1.00224 0.98996 0.99036 1.00215 1.00224
P2 1.00234 1.00233 0.99041 0.99037 1.00233 1.00231
P3 1.00233 1.00233 0.99040 0.99037 1.00231 1.00231


