Target accuracy of MA nuclear data and progress in validation by post irradiation experiments with the fast reactor "JOYO"

Shigeo OHKI, Kenji YOKOYAMA, Kazuyuki NUMATA*, and Tomoyuki JIN*

Japan Nuclear Cycle Development Institute * NESI Incorporation

I. Objective

- Development of burnup calculation method for commercialized fast breeder reactors (FBRs)
- Validation of nuclear data for transmutation of minor actinide (MA)
- Improvement of the accuracy of capture cross-section for major actinides
- Feedback of PIE data to FBR core design by cross-section adjustment

Programme of PIE analysis at JNC

- JOYO MK-I driver fuel
- JOYO MK-II driver fuel
- MA samples irradiated at JOYO MK-II core

II. Target accuracy of MA nuclear data

Nuclear-data-induced uncertainty was evaluated for reactor core parameters and fuel-cycle-related quantities.

600 MWe-Conventional FBR with LWR-MA 2.7% added (Np/Am/Cm=49/46/5 (wt%))

Standard deviation = $\sqrt{\mathbf{G}\mathbf{M}\mathbf{G}^{T}}$

- **G**: Sensitivity coefficient vector
- M: JENDL-3.2 covariance matrix (available for main nuclides)

Expanded in the space of nuclide, reaction, and energy group

Variance of MA nuclear data was tentatively deduced from discrepancies among the following libraries: JEF-2.2, ENDF/B-VI.5, and JENDL-3.3.

Decay heat, neutron emission, gamma energy from FBR spent fuel

Criticality, Sodium void reactivity

Burnup reactivity loss

Target accuracy of MA nuclear data - Remarks -

□ Important nuclides and reactions:

Am-241 Capture, Am-241 Isomeric Ratio, Am-243 Capture, Cm-242 Capture, Cm-244 Capture.

- MA data discrepancy has relatively small impact on conventional fast reactor cycle systems.
- However, there is no confidence that the discrepancy among libraries is equivalent to the actual uncertainty. Need for measurement and validation works.
- Covariance files for MA are also required for a practical uncertainty evaluation in the future.

III Progress in PIE analysis (1)JOYO MK-I driver fuel -

MK-I driver fuel: MOX fuel (²³⁵U/U ~ 23%, Pu/(U+Pu) ~ 18%) Operation period: 1978.4 – 1981.12 (11 cycles)

Maximum burnup: about 5 at% Number of PIE specimens: about 70

8

JOYO MK-I core and the examined fuel positions

JOYO MK-I driver fuel PIE Result of isotopic concentration change

JOYO MK-I driver fuel Result of PIE analysis

for minority isotopes.

 we have moved to MK-IT PIE
 where refined analytical technique was applied. 11

IV Progress in PIE analysis (2) - MA sample irradiation -

MA sample irradiation Analysis of the first Am-243 sample

Initial composition: Am-241/Am-243 = 12.2/87.8 (at%) We focused on

$$\frac{N_{cm-244}(t)}{N_{Am-243}(t)} \approx \sigma_{c}^{Am-243}\phi t + \cdots$$

$$\frac{N_{Am-243}(t)}{N_{Am-243}(t)} \approx (1 - I_{\gamma})\sigma_{c}^{Am-241}\phi t + \cdots$$
Isomeric ratio (g/(g+m))
The daughter nuclides at the other blanch (Cm-242 and Pu-238) were not available in the first PIE.

The sample loading position:

- In upper reflector region
- B_4C absorber was existing near by.

13

Calculation modeling error could be large.

MA sample irradiation Method of preliminary calculation

MA sample irradiation Preliminary C/E value

Comparison of C/E values

	PFR [Ref.1]	This work (JOYO)					PHENIX [Ref.2]		
Nuclear data library	JENDL-3.2	JENDL-3.2	JENDL-3.2	JENDL-3.3	ENDF/B-VI.5	JEF-2.2	JEF-2.2		
Am-241 Isomeric ratio	0.80	0.80	0.85	0.85	0.85	0.85	0.85		
Cm-244 / Am-243	0.95	0.84	0.84	0.84	0.83	0.88	0.96		
Am-242m / Am-241	1.29	1.30	1.00	1.02	0.94	1.03	1.03		
Experimental error (1)									
Cm-244 / Am-243: 10% (from spectroscopy)									
Am-242m / Am-241: 2% (from mass spectroscopy)									
[1] K. Tsujimoto, <i>et al., Nucl. Sci. Eng.</i> , 144 , 129 (2003).									
[2] R. Soule and E. Fort, Proc. GLOBAL '97, 1332 (1997). 15									

MA sample irradiation Sensitivity of calculation modeling

Item	Effect on	Effect on spectrum (1-group cross section)		
		²⁴¹ Am capture	²⁴³ Am capture	
Transport effect	-5%	-0.5%	-1%	
Mesh effect	0%	0%	0%	
Heterogeneity of MA loaded assembly	< 0.2%	<1%	< 2%	
Self-shielding effect	-	~0%	~-0.1%	
Control rod modeling in RRRP calculation (Model 1 vs Model 2)	0%	-3%	-4%	

Model 1: Control rod surrounded by fuel. Model 2: Control rod surrounded by reflector and fuel.

16

MA sample irradiation Summary

Result of the Am-243 sample PIE

- Satisfactory preliminary C/E values are obtained.
- There is a possibility that Am-241 isomeric ratio is about 0.85.
- We met the difficulty in measuring the abundance ratio of Cm/Am.

Next to do

- Increase the number of PIE results.
- Perform detailed calculation (better to concentrate on the samples irradiated at the core midplane).
- Use dosimeters for flux normalization.
- Find MA standards for isotope dilution analysis.
- Estimate calculation and experimental errors as realistically as possible.