Analysis of Innovative Water Reactor for Flexible Fuel Cycle in FCA using JENDL-3.3

Masaki ANDOH, Masahiro FUKUSHIMA, Shigeaki OKAJIMA, Kensuke KOJIMA, Kenji KAWASAKI and Masaharu KATAOKA Research Gr. for Reactor Physics, JAERI

A part of the experiments in this study were carried out with the fiscal support program presented by the MEXT.

Background

FLWR: Innovative Water Reactor for Flexible fuel cycle

- A new reactor concept for the next generation
- Pu recycling based on the LWR technology
- High burn-up and high breeding ratio
- Principal characteristics of FLWR
 - Pu enrichment:10%~, Tight lattice pitch: 1.0mm
 - Neutronic reaction: intermediate (resonance) energy range

FLWR core concept

Core configuration of FLWR

Neutron spectra in the FLWR core

Moderator voidage

Upper core: 75% Inner blanket: 65% Lower core: 45%

Neutron spectra: FLWR and others

Background of Experiment

 Å few experimental data for design study ex.) Mockup experiment for HCLWR (1980's) PROTEUS(___), EOLE(___), FCA: Enrichment=8%

$\hat{\Omega}$

- Needs for experimental data in FLWR design study Mockup experiments with <u>high enriched MOX</u> fuel in <u>tight lattice</u>
 - To check the core performances
 - To estimate the accuracy of prediction

Purposes of FCA-FLWR experiments

To obtain nuclear characteistics data

- tight lattice: reduced moderated spectrum
- highly enriched MOX fuel

Complementary to the experimental database for the design study

Evaluate the accuracy of designing FLWR

Program of FLWR mockup experiments

Experimental core: FCA-XXII-1 series

- Focus on the nuclear characteristics of the MOX fueled core
- Simulation of the neutron energy spectrum
- 3 different voide fraction of moderator (45%, 65%, 95%)

Outline of FCA-XXII-1 experiment

- MOX fueled core
 - Pu (92% fissile), Natural U, Depleted UO₂
- 3 different moderator voidage
 - Foamy polystyrene: 45%, 65%, 95% voided

	FCA-XXII-1			FCA-XV-1*
Enrichment (%)	16	16	16	8
V _m / V _f	0.6	0.6	0.6	0.6
Voidage (%)	45	65	9 5	0 ~ 95
H/HM**	0.8	0.5	0.09	1 ~ 0.06

*) HCLWR core, **) H: Hydrogen, HM: Heavy metal

Fast Critical Assembly (FCA)

Table-split type

 First critical in 1967
 Size: 2.7m x 2.7m x 1.3m

 Large flexibility in core

 compositions and geometries

Fuel elements and fuel drawer

Neutron spectra of FCA-XXII-1 and FLWR

FCA-XXII-1 experimental core

Measurement items

	FCA-XXII-1 series			
	45V	65V	95V	
Criticality	0	0	0	
Reaction rate				
Central r. r. ratio	0	0	0	
Axial & radial distribution	0	0	0	
Void coefficient	0	0	-	
Doppler effect				
U-238 (max.800°C)	0	0	0	
Reactivity effect				
Pu (Pu92%, 81%, 75%)	0	0	0	
B ₄ C(B-10: 20% - 90%)	0	0	0	

Calculation method

- Deterministic method
 - Nuclear reactions in <u>resonance energy region</u>
 - ⇒ SRAC system, Calculation system for FR
 - Comparison of both results
 - Investigation of calculation methods for analysis
 - Estimation of accuracy of calculation
- Probabilistic method (MVP)
 - Criticality, void effect (perturbation method)
- Nuclear data : JENDL-3.3

Criticality: Comparison of k_{eff} (C/E)

XXII-1(65V)	SRAC	FR	MVP
J-3.2	$1.0004 \pm 0.02\%$	$0.9961 \pm 0.02\%$	$1.0073 \pm 0.009\%$
J-3.3	$1.0017 \pm 0.02\%$	$0.9970 \pm 0.02\%$	$1.0078 \pm 0.005\%$

<u>Calculation condition</u> 3D Transport (THREEDANT) : P0-S8 Inisotropic neutron leakage effect (along the plate direction) is considered Energy group : 107 gr. (SRAC), 70gr. (FR) Histories in MVP : 61M (J3.2), 200 M (J3.3)

J-3.3 > J-3.2 (△=0.05% to 0.1%)

k_{eff} (C/E) in different voidage cores

Central reaction rate ratio

Spectrum index

F28/F25 = U-238 fission / U-235 fission F49/F25 = Pu-239 fission / U-235 fission **Breeding performance index**

C28/F49 = U-238 capture / Pu-239 fission

Calculation condition

3D Diffusion (CITATION)

Inisotropic neutron leakage effect (along the plate direction) is considered

- Energy group : 107 gr. (SRAC), 70gr. (FR)
- X-sec.: Ultra-fine energy collision probability

Central reaction rate ratio -1 (C/E)

Central reaction rate ratio -2 (C/E)

Moderator void effect -1 (C/E)

Void condition : moderator void fraction change to 80% and 95% at the <u>core center</u> (5.5cm cube)

Moderator void effect - 2

Void condition : moderator void fraction change to 95% in different regions in central axis

Moderator void effect - 2 (C/E)

Doppler effect (C/E)

Measured values : Reactivity worth due to sample temp. change from 20° C to 800° C

Pu sample reactivity worth (C/E)

FCA-FLWR mockup experiment

- Neutron energy spectrum well simulated
- Void fraction varied: 45%, 65%, 95%
- Criticality, Reaction rate ratio, Moderator void effect, Doppler effect, Pu reactivity worth, etc.

Analysis results

- C/E values
 - C28/F25: 1.0 ~ 1.1, SRAC~FR, overestimate in softer spectrum Void effect: 0.76 ~ 0.99, region dependency, better wih SRAC Doppler effect: 0.99 ~ 1.08, SRAC~FR

No large defference between JENDL-3.2 and JENDL-3.3

Current status and future program

FCA-FLWR mockup experiment

- All the experiments have been finished
- Analysis results
 - Almost all the analyses have been finished
 - Detail analysis has just started
 - Evaluation of calculation accuracy
 - Sensitivity analysis
- Feedback to design study
 - Representativity