# Request from Nuclear Fuel Cycle & Criticality Safety Design

#### Manabu Hamasaki, Kiichiro Sakashita and Toshihiro Natsume

#### MITSUBISHI HEAVY INDUSTRIES, LTD.

#### Contents

- Nuclear Fuel Cycle
- Criticality Safety Design
- Fuel Casks
- Burnup Credit
- Recent Issue : Spent Fuel Disposal
- Conclusions



#### **Nuclear Fuel Cycle (LWR)**



## Variety of Fissile Materials (1)

#### **Uranium "Cradle to Grave" and Rebirth**

- Ore Uranium Compounds (ADU, UF<sub>6</sub>, Oxide)
- Gas Suspension Precipitation Powder Pellets Rods – Assemblies
- Spent Fuel (U, Pu, FPs, MAs) Assemblies
- Assemblies Chopped Oxide (U/Pu/FP/MA)
   Nitric Solution (U/Pu/FP/MA) Nitric Solution (U/Pu)
- Powder (RUO<sub>3</sub>,MOX) Pellets (MOX) MOX Assemblies

### Variety of Fissile Materials (2)

#### Gaseous

• Hexa-Fluoride :  $UF_6$ 

#### Fluidal

- Fluoride Solution : UO<sub>2</sub>F<sub>2</sub>aq
- Nitric Solution :  $UO_2(NO_3)_2aq$ ,  $Pu(NO_3)_4aq$
- Homo. Powder :  $UO_2/UO_3-H_2O$ , MOX- $H_2O$
- Slurry : ADU
- Solid & Mixture
- Hetero. Pellets/Rods/FAs : UO<sub>2</sub>-H<sub>2</sub>O, MOX-H<sub>2</sub>O
- Dissolving Hetero. Mixture : Spent UO<sub>2</sub> Nitric Solution

### Variety of Fissile Materials (3)

- Indeterminate Form
  - : Heterogeneity, Non-uniformity, Randomness
  - => Modeling Capability of Criticality Codes
- Dry, Wet, Aqueous Solution
  - : Various Moderation Condition (H/HM)
  - => Variety of Neutron Spectra
- LEU, Plutonium, MA, Their Mixture
  - : Various Resonance Nuclides
  - => Accurate Resonance Data & Treatment



### **Criticality Design Practices in Japanese Industries(1)**

- Standardized Criticality Calculation Codes Systems with Group Constants & Monte Carlo Code (ex.KENO family)
- JACS (JAPAN) MGCL (Multi-Group Constants Library) : ENDF/B-IV based 137G / 26G => Applied to Many Licensing Cases
- SCALE (USA)
  - CSRL (Criticality Safety Reference Library) : ENDF/B-V based 238G / 44G ENDF/B-IV based 218G / 27G etc



#### **Criticality Design Practices in Japanese Industries(2)**

- Reactor Core Design Codes (ex. PHOENIX-P/HIDRA) F/A Storage at Power Plant Site ENDF-B/V based 42G (PWR Fuels Storage) Consistency with Reactor Core Design
- Continuous Energy Monte Carlo Codes
   Used for Many Studies without Licensing Purpose
   MCNP(USA) ENDF-B/VI, JENDL-3.3 etc

  MVP(Japan) ENDF-B/VI, JENDL-3.3 etc



### Criticality Safety Design Criteria(1)

• The Most Common : 0.95 Criterion k-eff  $\leq 0.95$ 

where *k-eff* is calculated with the **"well qualified"** criticality code system.

 The Estimated Critical Lower Limit k-eff (usu. ≥ 0.95) Nuclear Data – Criticality Code – Fissile Systems Specific Reliability Limit Derived from Criticality Benchmarks Bare Computational Uncertainty w/o Engineered Margin



### Criticality Safety Design Criteria(2)

#### • JACS with ENDF-B/IV based 137G-MGCL

| Fissile System      | critical <i>keff</i> | lower limit keff |
|---------------------|----------------------|------------------|
| Homo. LEU           | 0.989                | 0.958            |
| Hetero. LEU         | 0.996                | 0.978            |
| Pu Solution         | 1.004                | 0.973            |
| Homo. MOX           | 1.018                | 0.980            |
| Hetero. MOX         | 0.998                | 0.980            |
| U/Pu Mixed Solution | 0.991                | 0.950            |

Ref. "Nuclear Criticality Safety Handbook Version2", JAERI-1340 (1999)



#### Logistics in Nuclear Fuel Cycle – Fuel Casks



- Casks
  - Versatile Logistic Components for Nuclear Fuel Cycle.
  - Transportation, Interim/Long-Term Storage
- Global Market

#### **Performance of Casks**

- Payloads No. of Fuel Assemblies/ cask
- Affordable Material Neutron Absorber Gamma/Neutron Shielding
- Mechanical Strength, Heat Resistance and Radiation Resistance
- Easy to Handle Light Weight
- Total Cost Performance



#### **Criticality Safety of Current Spent Fuel Casks**

- Subcritical when immersed in water
- Subcritical when piled up in numbers
- Neutron Absorber : B-SUS, B-Al, B-Resin, Cd-Alloy etc
- Unirradiated Fuel with Initial <sup>235</sup>U enrich.
- $keff \leq 0.95$  (usu.)

### Challenge for Burnup Credit (BUC)

- "A Guide Introducing BU Credit, Preliminary Version", JAERI-Tech 2001-055
- Two Levels of Conservatism, Level 1 : Actinides Only (U, Pu, (+MA)) Level 2 : Actinides and Fission Products
- Uncertainty of Isotopic Composition of SF : Nuclear Data, Depletion Code, Depletion Conditions as well as Cooling Time after Reactor Shutdown
- Uncertainty of Criticality Prediction of SF Systems : Nuclear Data, Criticality Code as well as Isotopic Composition



#### Validation Requirement for BUC

- Isotopic Composition
  - Post-Irradiation Examination (PIE) Data
  - PIE Data Base : SFCOMPO (JAERI)
- Criticality with Spent Fuel
  - Criticality Tests with Actual SF
    - ex. REBUS International Program (Bergonuclaire)
  - Power Reactor Simulation with Criticality Codes
- Integral Tests are with Difficulty by Nature
  - To Cover Whole Spectrum of Depletion Environment,
  - To Fund High Cost to Handle Irradiated Fuels.

#### Level-1 : Actinide BU Credit

- Already Applied to Many Examples
- Rokkasho Reprocessing Plant (Japan)
  SF Storage Pool (Residual <sup>235</sup>U Enrich. Control)
  Dissolver and Head End
  U+Pu Only
- Dry Storage (Germany)
- Transport Casks (France, Germany, Netherlands, Switzerland and USA)



- Already Applied to Several Examples
- NPP Site Spent Fuel Pit (USA)
- Long-lived and Chemically Stable (Non-Gaseous nor Non-Volatile) Nuclides are Preferred



#### Level-2: FP Credit (2)

 Selected Important Nuclides : **6FPs** (CEA-France at early stage) Sm-149, Rh-103, Gd-155, Nd-143, Cs-133, Sm-152 12FPs (JAERI-Tech 2001-055) + Tc-99, Eu-153, Nd-145, Sm-147, Mo-95, Sm-150 15FPs (OECD BUC W.G.) + Sm-151, Ag-109, Ru-101 13FPs (SAND87-0151) for Casks Tc-99, Rh-103, *Xe-131*, Cs-133, Nd-143, Nd-145, Pm-147, Sm-147, Sm-149, Sm-151, Sm-152, Eu-153, Gd-155

#### Level-2: FP Credit (3)



Ref. JAERI-Tech 2001-055

MITSUBISHI HEAVY INDUSTRIES, LTD.

### Level-2: FP Credit (4)

- Case Study : PWR Spent Fuel Cask
- Boronated Aluminum(B-Al) Spacer + Flux Trap Design
- Reference Fuel : PWR 4.1wt% Intact => 4.8wt% BUC
- Flux Trap / B-10 Content Surveyed with No BUC, Level-1, Level-2A : 13 FP Nuclides(SAND87-0151) or Level-2B : All FP Nuclides Considered BUC.
- Assumed Uncertainty in Isotopic Composition
  U, Pu, Actinides : +5% for fissile, -5% for fertile
  FPs : -20 %





#### Level-2: FP Credit (5)



**Cask Model for Case Study** 



#### Level-2: FP Credit (6)











#### **Recent Issue : SF Disposal**

- What if Reprocessing Project is Given Up?
- Economic Study Associated with Periodic Revision of "Long Term Plan" by Japan Atomic Energy Commission.
- Major Technical and Non-Technical Challenges were Studied and Assessed.
- Criticality Issue was Identified As One of the Major Uncertainties of the Study, since No Safety Evaluation Criteria for Pu etc's Criticality Prevention had not yet been established.



### Uncertainty of Disposed SF Criticality

- No Safety Evaluation Criteria.
- Modeling, Scenario and Phenomenology are not Well Established.

From the Viewpoint of Nuclear Data :

- Very Long Term (~10<sup>3</sup>y) Transient of Isotopics.
- Integral Validation Difficulty



#### **Conclusions (1)**

- Nuclear fuel cycle consists of wide spectrum of fissile systems. Variety of resonance nuclides and neutron spectra are to be covered.
- Better qualified codes and nuclear data could improve criticality safety design criteria, and give more competitive edge to nuclear fuel cycle.



**Conclusions (2)** 

- Burnup credit is the major front of criticality safety design of spent fuel(SF) systems.
- Level-2 burnup or FP credit is promising, whose efficiency depends on uncertainty of SF characteristics and their prediction.



**Conclusions (3)** 

- Integral tests for SF systems are difficult by nature, microscopic validation would be of more importance.
- In SF disposal study, criticality issue was identified as one of the major uncertainties. If its reduction was necessitated, improvement of FP and actinides data would play a certain role.

