Introduction

- Accelerator-based application facilities
- Estimation of the cosmic ray effects
- Cancer therapy

Evaluated nuclear reaction data
Neutron & proton inc.
~ GeV range
Various nuclei

90,91,92,94,96Zr, 93Nb, 182,183,184,186W

- Zr : Nuclear fuel element for ADS
- **Nb** : Superconducting material such as NbTi, Nb₃Sn
- W : Spallation neutron source, beam window

- Energy range -

 Neutron
 : 20 ~ 200 MeV

 Proton
 : 10 ~ 200 MeV

Elastic, total and total-reaction c.s. \longrightarrow Evaluated c.s. Transmission coeff. $T_l(\varepsilon)$ \longrightarrow For H-F calculations

H-F statistical calculation

OMPs for transmission coeff. "T_l(ɛ)" n, p : Our OMP d, ³He : Daehnick *et al.*t : Becchetti & Greenlees

 α : Avrigeanu *et al*.

Level density parameter " a " (Fermi-gass region in G-C)

- Taken from RIPL (The same parameter used for JENDL-3.3),
- Ignatyuk et al. (If there were no data in the RIPL)

Exciton model calculation

Nucleon emissions• State density parameter "g":• (M^{β}) " for transition rate:• Average effective well depth " V_{eff} ":adjusted for p_{inc} eval.(Nuclear surface effect)

Composite-particles emissions

- Pickup : original Kalbach semi-empirical model
- α -knockout : modified Kalbach semi-empirical model

Note, A factor was multiplied to get reasonable agreement with exp. data

Calculation for α **-knockout**

Kalbach original expression $\frac{d\sigma_{\text{knoc.}}(a,b)}{d\epsilon} = \mathcal{F}_{knoc.} \times \frac{\sigma_a}{p_a E_a^3} (2s_b + 1) p_b \epsilon \sigma_b(\epsilon) \frac{\omega_{\text{knoc.}}(U)}{A^2} F$ $\omega_{knoc.}(U) = g_i g_\alpha \left(U - \frac{1}{2a_i} - \frac{1}{2a_\alpha} \right)$ $\frac{d\sigma_{\text{knoc.}}(a,b)}{d\epsilon} = \mathcal{F}'_{knoc.} \times \frac{\sigma_a}{p_a} (2s_b + 1) p_b \epsilon \sigma_b(\epsilon) \frac{\omega_{\text{knoc.}}(U)}{\omega_{\text{knoc.}}(U_{\text{max}})} \frac{F}{A^2}$ $\omega_{knoc.}(U) = g_i g_\alpha \left(U - \frac{1}{2a_i} - \frac{1}{2a_\alpha} \right) \exp\left(\frac{U}{n^4}\right) \qquad \text{Adjustable}$

DWBA calculation

(In-elastic direct reaction calc.)

Excitations of low-lying levels

OMP : Our OMP

Level info. (E_{ex}, l, π, β) : RIPL

Excitation of GR (LEOR; $I^{\pi} = 3^{-}$ **)**

$$\left(\frac{d\sigma}{d\varepsilon}\right)_{C^{\mathbf{P}}} = \beta^2 \sigma^{dw} \times f(\hbar\omega, \Gamma)$$

 β (deformation parameter)

 $\hbar\omega$ (average $E_{\rm ex}$)

 $f(\hbar\omega,\Gamma)$

 Γ (resonance width)

- : sum rule
- : Adjustable
- : Lorentzian func.
- : ~ 5 MeV

This evaluation vs LA150 (Summary for main differences)

	Our eval.	LA150
Target	Zr, Nb, W	No data for Zr
OMP (<i>n</i> , <i>p</i>)	Local (continuous <i>E</i> dependent)	Global (slight adjustment)
V _{eff.}	Adjusted for p_{inc} eval.	No adjustment
Composite-particle pre-equilibrium emiss.	Modified semi-empirical model	Original semi-empirical model
LEOR	Nb, W	Only for W

Results of $\sigma_{tot.}(E_n)$ (Total cross sections)

Results of $\sigma_{reac.}(E_p)$ (Total-reaction cross sections)

Results of $(d\sigma_{el}/d\Omega)$ (Elastic differential cross sections)

Nucleon prod. DDX for Zr

Nucleon prod. DDX for Nb (Our evaluations & LA150 eval.)

Nucleon prod. DDX for W (Our evaluations & LA150 eval.)

Nucleon prod. DDX for W (Our evaluations & LA150 eval.)

LEOR contributions (Our evaluations & LA150 eval.)

Composite-particle prod. (Our evaluations & LA150 eval.)

α-particle prod. (Our evaluations & LA150 eval.)

Isotope-prod. c.s. (Our evaluations & LA150 eval.)

- Nuclear data were evaluated for neutron and proton on Zr, Nb, and W up to 200 MeV.
- Average well depth was treated as adjustable parameter.
- Giant resonance contribution were considered for (*n,xn*).
- Modified semi-empirical Kalbach model was used for α-particle pre-equilibrium emission.
- Our evaluations agreed with experimental data better than LA150 evaluations especially for (*p*,*xn*), (*p*,*xα*)