Fission Cross Section Measurements at Intermediate Energies

A.B. Laptev

Japan Nuclear Cycle Development Institute
Tokai works, Tokai-mura, Ibaraki-ken 319-1194, Japan
E-mail: laptev@jnc.go.jp
OBJECTIVE:

-To carry out precise measurements of the neutron- and proton-induced fission cross-sections of long-lived actinides and some stable heavy nuclei in wide energy range.

MOTIVATION:

-A long standing need in information about fission of heavy nuclei induced by the particles at intermediate energies for many applications:
 - accelerator-driven transmutation of nuclear waste, especially actinides;
 - energy generation;
 - peaceful use of weapon plutonium, etc.
- Tasks of fundamental physics.
- The existing differences among the data of different measurements amount up to 30% that is outside the quoted experimental errors for the most part.
Neutron induced fission cross-sections of ^{233}U, ^{238}U, ^{232}Th, ^{239}Pu, ^{237}Np, natPb and ^{209}Bi in neutron energy range from 1 MeV to 200 MeV have been measured at GNEIS facility.

About 900 points

Reference:

EXFOR file numbers are 41429 and 41430
Neutron induced fission cross-sections of 240Pu, 243Am, natW and 209Bi in neutron energy range from 1 MeV to 200 MeV have been measured at GNEIS facility.

About 400 points

References:

Proton induced fission cross-sections of 233U, 238U, 235U, 232Th, 239Pu, 237Np, natPb and 209Bi in proton energy range from 200 MeV to 1000 MeV at 100 MeV intervals have been measured at PNPI proton synchrocyclotron

Reference:
General layout of the PNPI synchrocyclotron
PNPI synchrocyclotron
PNPI SYNCHROCYCLOTRON

general information:

- Diameter of the magnet pole pieces: 685 cm
- Width of the gap between poles: 50 cm
- Magnet weight: 8,000 t
- Electric power supplied: 1 MWt
- Frequency range: 30 – 13 MHz
- Accelerating voltage: 10 kV
- Repetition rate: 40-60 Hz
- Internal beam intensity: < 3 μA
- Extraction coefficient: 30 %
- Duty cycle coefficient: 50 %
General layout of the Gatchina neutron time-of-flight spectrometer GNEIS and experimental arrangement for fission cross-section measurements
Pulsed neutron source:

- average fast neutron intensity ... $\sim 3 \times 10^{14}$ n/s
- duration of the fast neutron pulse ~ 10 ns
- repetition rate ... < 50 Hz
- internal water-cooled rectangular lead target 40 cm \times 20 cm \times 5 cm
- rectangular polyethylene moderator 30 cm \times 10 cm \times 5 cm

Spectrometer:

- number of evacuated flight paths 5
 (one beam #5 looking at the target and others #1-4 looking at the moderator)
- length of flight paths ... $35 - 50$ m
- experimental area (GNEIS building) 45×30 m2

Internet URL: http://hepd.pnpi.spb.ru/~gneis
The neutron flux at the 48.5-m flight path normalized to a value of 1 μ A of the proton beam on the neutron-producing target.
Neutron energy resolution for the flight path length 48.5 m
Examples of gamma flash detector (a and b) and fission chamber signal
Signal identification has been made by a method of digital filtering:

\[y'(i) = \sum_{j=i-n}^{i+n} \left\{ 2y(j) - y[j-(2n+1)] - y[j+(2n+1)] \right\} \]

- \(y(i) \) – initial data in TOF channel \(i \)
- \(y'(i) \) – filtered data in TOF channel \(i \)
Average pulse height spectra observed in the neutron energy range 0.5 – 200 MeV

Counts / channel

Pulse height channel
Pulse height spectra observed at different neutron energies for 235U

![Pulse height spectra](image-url)

- $E_n = 200$ MeV
- $E_n = 100$ MeV
- $E_n = 50$ MeV
- $E_n = 20$ MeV
- $E_n = 10$ MeV
- $E_n = 5$ MeV
- $E_n = 2$ MeV
- $E_n = 1$ MeV
- $E_n = 0.6$ MeV

A.B. Laptev
Fission Cross Section Measurements at Intermediate Energies

2004 Symposium on Nuclear Data
Nuclear Data Center, JAERI, Japan
November 11-12, 2004
Pulse height spectra observed at different neutron energies for 240Pu
Time-of-flight spectra (10 ns channel width) observed after background subtraction

The TOF vs energy calibration have been used:
- a position of the lead total cross-section resonances;
- a true time-zero of the scale from the position of the gamma-flash peak.

An accuracy of this calibration is ± 0.03 %
Pulse height spectra observed for one of ^{nat}Pb, ^{209}Bi and ^{235}U targets for the neutron energy range 25 – 200 MeV (Pb, Bi) and 0.5 – 200 MeV (^{235}U).
Average pulse height spectra observed for W and Bi targets
Corrections due to neutron flux attenuation in case of ^{240}Pu

- **(a)** - different flight path length of the of ^{240}Pu and of ^{235}U targets; (b and c) - absorption and scattering in the backing foil material (Al) and working gas (methane); (d) - fragment losses in the targets, neutron momentum transfer and angular anisotropy of fission fragments; (e) - total correction.
Ratio of the TOF-spectra for two 235U targets ($\Delta L = 200$ mm)

![Graph showing the ratio of TOF-spectra for two 235U targets with a linear fit equation: $R(E) = a \cdot E + b$. The linear fit equation is $a = (0.88 \pm 2.34) \cdot 10^{-5}$]
Fission cross-section of ^{233}U, ^{238}U, ^{232}Th and ^{239}Pu measured by Shcherbakov et al. (2001) in comparison with other data and evaluations
Fission cross-section of ^{237}Np measured by Shcherbakov et al. (2001) in comparison with other data and evaluations

Fission cross-section of ^{240}Pu and ^{243}Am measured by Laptev et al. (2004) in comparison with other data and evaluations
Fission cross-section of 243Am measured by Laptev et al. (2004) in comparison with other data and evaluations.

Neutron energy, MeV

Fission cross-section, b

- Laptev et al., 2004; ○ Behrens et al., 1981
- Seeger, 1970; △ Fomushkin et al., 1984
- Fursov et al., 1985; ▲ Kanda et al., 1987
- Knitter et al., 1988; ◆ Goverdovskiy et al., 1989
- JENDL-3.3; — ENDF B-VI
- Maslov et al., 1996; — Ignatyuk et al., 1999
Fission cross-section of natPb and 209Bi measured by Shcherbakov et al. (2001) in comparison with other data and evaluations
Fission cross-section of ^{nat}W and ^{209}Bi measured by Laptev et al. (2004) in comparison with other data and evaluations.
Experimental set-up for proton-induced fission cross-section measurements of Kotov et al. (2003)

SPECIFICATION:

- both fission fragments registration in coincidence by two parallel plate avalanche counters;
- a large solid angle acceptance about 10 sr for fission fragment;
- 100% efficiency for fission fragments;
- good resolution fission events from events produced by other nuclear reactions;
- the proton beam monitoring:
 - at low beam intensity (~10^5 p/s) by direct count of scintillation telescopes;
 - at high beam intensity (~10^7 p/s) by registration of pp-elastic scattering on the CH₂ target;
- copper degrader to obtain proton energy variation.

CORRECTIONS FOR:

- solid angle acceptance of fission fragment;
- inefficiency of the proton monitor;
- a probability of two or more protons appearance in the single bunch;
- an anisotropy of fission fragments and their energy losses in target.

1. chamber; 2. thin windows; 3. PPAC's; 4. target.
Proton-induced fission cross-sections of 233U, 235U and 238U measured by Kotov et al. (2003) in comparison with other data.
Summary

- Neutron-induced fission cross-sections of actinide nuclei 233U, 238U, 232Th, 239Pu, 237Np, 240Pu and 243Am and sub-actinide nuclei natPb, 209Bi and natW have been measured in neutron energy range from 1 MeV to 200 MeV in two experiments at GNEIS facility.

- The fission cross-section of 243Am in the neutron energy range from 40 MeV to 200 MeV has been measured for the first time.

- The neutron-induced fission cross-section of natW has been measured for the first time with a "white" neutron source.

- Statistical accuracy of measured fission cross-sections of actinides 233U, 238U, 232Th, 239Pu and 237Np is less than 1%, that of actinides 240Pu and 243Am is about 2%, that of sub-actinides natPb and 209Bi varies from about 5% at 60 MeV to 1.5% at 200 MeV and that of natW varies from 19% at 100 MeV to 7% at 200 MeV.

- Detailed analysis of systematic errors has been done.

- In general, in the overlapping energy regions (below 20 MeV) our data are in reasonable agreement with previous data obtained mainly at electron linacs.
- There is a significant disagreement between data of Shcherbakov et al. (2001) and that of Lisowski et al. for 233U, 238U, 239Pu and 232Th above 20 MeV while for 237Np both data sets are not in contradiction.

- There is some disagreement between data of Laptev et al. (2004) and that of Staples and Morley for 240Pu above 40 MeV. On our opinion, most of the differences are in normalization rather than shape.

- For 243Am data of Laptev et al. (2004) shows a good agreement with that of Behrens et al. and Goverdovskiy et al., there are significant disagreements between previous data sets.

- The libraries’ evaluations, theoretical calculations of Maslov et al. and evaluation of Ignatyuk et al. correspond other data sets rather than Laptev et al. in case of 243Am. Normalization of data of Laptev et al. for 243Am to libraries' 14 MeV value withdraws this disagreement.

- There is a good agreement between data of Shcherbakov et al. for natPb and 209Bi and previous data.

- There is generally good agreement between data of Laptev et al. for natW and those of Smirnov et al., except for a possible discrepancy in the 90-100 MeV region.

- Measured fission cross-section of 209Bi by Laptev et al. reproduces very carefully that measured in frame previous experiment of Shcherbakov et al.
- Proton-induced fission cross-sections of actinide nuclei ^{233}U, ^{235}U, ^{238}U, ^{232}Th, ^{239}Pu and ^{237}Np and sub-actinide nuclei nat^{209}Bi have been measured in proton energy range from 200 MeV to 1000 MeV at PNPI proton synchrocyclotron by Kotov et al. (2003). Results of measurements in case of ^{233}U, ^{235}U and ^{238}U are presented.

- A statistical accuracy of the measured fission cross section by Kotov et al. was better than 1.5%, the overall accuracy was better than 10%.

- The cross sections for proton induced fission of ^{233}U in the energy range 200-1000 MeV was obtained by Kotov et al. for the first time.

- According to opinion of Kotov et al., their results for ^{238}U in the energy range from 300 to 900 MeV do not agree with a majority of the early-obtained data.
Pulse height spectra observed at different neutron energies for 209Bi

- $E_n = 200$ MeV
- $E_n = 180$ MeV
- $E_n = 160$ MeV
- $E_n = 140$ MeV
- $E_n = 120$ MeV
- $E_n = 100$ MeV
- $E_n = 80$ MeV
- $E_n = 60$ MeV
- $E_n = 40$ MeV
Pulse height spectra observed at different neutron energies for natW

![Graph showing pulse height spectra for different neutron energies](image)