Fission Cross Section Measurements at Intermediate Energies

A.B. Laptev

Japan Nuclear Cycle Development Institute Tokai works, Tokai-mura, Ibaraki-ken 319-1194, Japan E-mail: laptev@jnc.go.jp

OBJECTIVE:

-To carry out precise measurements of the neutron- and proton-induced fission crosssections of long-lived actinides and some stable heavy nuclei in wide energy range.

MOTIVATION:

-A long standing need in information about fission of heavy nuclei induced by the particles at intermediate energies for many applications:

accelerator-driven transmutation of nuclear waste, especially actinides;

energy generation;

peaceful use of weapon plutonium, etc.

-Tasks of fundamental physics.

-The existing differences among the data of different measurements amount up to 30 % that is outside the quoted experimental errors for the most part.

1997-2000

ISTC Project # 609

Neutron induced fission cross-sections of ²³³U, ²³⁸U, ²³²Th, ²³⁹Pu, ²³⁷Np, ^{nat}Pb and ²⁰⁹Bi in neutron energy range from 1 MeV to 200 MeV have been measured at GNEIS facility

About 900 points

Reference:

O. Shcherbakov, A. Donets, A. Evdokimov, A. Fomichev,

- T. Fukahori, A. Hasegawa, A. Laptev, V. Maslov, G. Petrov,
- S. Soloviev, Yu. Tuboltsev and A. Vorobyev,
- *J. Nucl. Sci. Tech.*, Suppl. 2, 230 (2002)

EXFOR file numbers are 41429 and 41430

2001-2004

ISTC Project # 1971

Neutron induced fission cross-sections of ²⁴⁰Pu, ²⁴³Am, ^{nat}W and ²⁰⁹Bi in neutron energy range from 1 MeV to 200 MeV have been measured at GNEIS facility

About 400 points

References:

A.B. Laptev, A.Yu. Donets, A.V. Fomichev, A.A. Fomichev, R.C. Haight, O.A. Shcherbakov, S.M. Soloviev, Yu.V. Tuboltsev and A. Vorobyev, *Nucl. Phys. A* **734S**, E45 (2004).

A.B. Laptev, A.Yu. Donets, V.N. Dushin, A.V. Fomichev, A.A. Fomichev, R.C. Haight, O.A. Shcherbakov, S.M. Soloviev, Yu.V. Tuboltsev and A. Vorobyev, Report at the *Int. Conf. on Nucl. Data for Sci. and Tech. (ND2004)*, Santa Fe, NM, USA, Sept. 26-Oct. 1, 2004.

2000-2003

ISTC Project # 1405

Proton induced fission cross-sections of ²³³U, ²³⁸U, ²³⁵U, ²³²Th, ²³⁹Pu, ²³⁷Np, ^{nat}Pb and ²⁰⁹Bi in proton energy range from 200 MeV to 1000 MeV at 100 MeV intervals have been measured at PNPI proton synchrocyclotron

Reference:

A. Kotov, Yu. Gavrikov, L. Vaishnene, V. Vovchenko, V. Poliakov, O. Fedorov, T. Fukahori, Yu. Chestnov and A. Shchetkovskiy,

Report at the XVI Int. Workshop on Physics of Nuclear Fission, IPPE, Obninsk, Russia, October 7-10, 2003. It is available at web by URL http://nucleus.ru/fission2003/

General layout of the PNPI synchrocyclotron

PNPI synchrocyclotron

PNPI SYNCHROCYCLOTRON

general information:

- Diameter of the magnet pole pieces	685 cm
- Width of the gap between poles	50 cm
- Magnet weight	8,000 t
- Electric power supplied	1 MWt
- Frequency range	30 – 13 MHz
- Accelerating voltage	10 kV
- Repetition rate	40-60 Hz
- Internal beam intensity	<3 μA
- Extraction coefficient	30 %
- Duty cycle coefficient	50 %

General layout of the Gatchina neutron time-of-flight spectrometer GNEIS and experimental arrangement for fission cross-section measurements

A.B. Laptev Fission Cross Section Measurements at Intermediate Energies JNC

2004 Symposium on Nuclear Data Page 9 Nuclear Data Center, JAERI, Japan November 11-12, 2004

Pulsed neutron source:

- average fast neutron intensity	~ 3 [.] 10 ¹⁴ n/s
- duration of the fast neutron pulse	~ 10 ns
- repetition rate	< 50 Hz
- internal water-cooled rectangular lead target	$40 \text{ cm} \times 20 \text{ cm} \times 5 \text{ cm}$
- rectangular polyethylene moderator	$30 \text{ cm} \times 10 \text{ cm} \times 5 \text{ cm}$

Spectrometer:

- number of evacuated flight paths	5
(one beam #5 looking at the target and	
others #1-4 looking at the moderator)	
- length of flight paths	35 – 50 m
- experimental area (GNEIS building)	$45 \times 30 \text{ m}^2$

Reference: N.K. Abrosimov et al., Nucl.Inst.Meth. A242 (1985) 121 Internet URL: http://hepd.pnpi.spb.ru/~gneis The neutron flux at the 48.5-m flight path normalized to a value of 1 μ A of the proton beam on the neutron-producing target

Neutron energy resolution for the flight path length 48.5 m

Examples of gamma flash detector (a and b) and fission chamber signal

A.B. Laptev Fission Cross Section Measurements at Intermediate Energies

Signal identification has been made by a method of digital filtering:

A.B. Laptev Fission Cross Section Measurements at Intermediate Energies JNC

2004 Symposium on Nuclear DataPage 14Nuclear Data Center, JAERI, JapanNovember 11-12, 2004

Average pulse height spectra observed in the neutron energy range 0.5 - 200 MeV

A.B. Laptev Fission Cross Section Measurements at Intermediate Energies JNC

2004 Symposium on Nuclear DataPage 15Nuclear Data Center, JAERI, JapanNovember 11-12, 2004

Pulse height spectra observed at different neutron energies for ²³⁵U

Pulse height spectra observed at different neutron energies for ²⁴⁰Pu

Time-of-flight spectra (10 ns channel width) observed after background subtraction

The *TOF vs energy* calibration have been used:

-a position of the lead total cross-section resonances;

-a true time-zero of the scale from the position of the gamma-flash peak.

An accuracy of this calibration is $\,\pm$ 0.03 %

Pulse height spectra observed for one of ^{nat}Pb, ²⁰⁹Bi and ²³⁵U targets for the neutron energy range 25 - 200 MeV (Pb, Bi) and 0.5 - 200 MeV (²³⁵U)

A.B. Laptev

2004 Symposium on Nuclear Data Page 19 Nuclear Data Center, JAERI, Japan November 11-12, 2004

Average pulse height spectra observed for W and Bi targets

A.B. Laptev Fission Cross Section Measurements at Intermediate Energies JNC

2004 Symposium on Nuclear DataPage 20Nuclear Data Center, JAERI, JapanNovember 11-12, 2004

Corrections due to neutron flux attenuation in case of ²⁴⁰Pu

Neutron Energy, MeV

(**a**) - different flight path length of the of ²⁴⁰Pu and of ²³⁵U targets; (**b** and **c**) - absorption and scattering in the backing foil material (AI) and working gas (methane); (**d**) - fragment losses in the targets, neutron momentum transfer and angular anisotropy of fission fragments; (**e**) - total correction.

Ratio of the TOF-spectra for two ²³⁵U targets (ΔL = 200 mm)

Fission cross-section of ²³³U, ²³⁸U, ²³²Th and ²³⁹Pu measured by Shcherbakov *et al.* (2001) in comparison with other data and evaluations

A.B. Laptev Fission Cross Section Measurements at Intermediate Energies JNC

2004 Symposium on Nuclear DataPage 23Nuclear Data Center, JAERI, JapanNovember 11-12, 2004

Fission cross-section of ²³⁷Np measured by Shcherbakov *et al.* (2001) in comparison with other data and evaluations

Fission cross-section of ²⁴⁰Pu and ²⁴³Am measured by Laptev *et al*. (2004) in comparison with other data and evaluations

Fission cross-section of ²⁴³Am measured by Laptev *et al.* (2004) in comparison with other data and evaluations

A.B. Laptev Fission Cross Section Measurements at Intermediate Energies

Fission cross-section of ^{nat}Pb and ²⁰⁹Bi measured by Shcherbakov *et al.* (2001) in comparison with other data and evaluations

Fission cross-section of ^{nat}W and ²⁰⁹Bi measured by Laptev *et al.* (2004) in comparison with other data and evaluations

Experimental set-up for proton-induced fission cross-section measurements of Kotov *et al.* (2003)

1. chamber; 2. thin windows; 3. PPAC's; 4. target.

A.B. Laptev Fission Cross Section Measurements at Intermediate Energies

SPECIFICATION:

- both fission fragments registration in coincidence by two parallel plate avalanche counters;
- a large solid angle acceptance about 10 sr for fission fragment;
- 100% efficiency for fission fragments;
- good resolution fission events from events produced by other nuclear reactions;
- the proton beam monitoring:
 - at low beam intensity (~10⁵ p/s) by direct count of scintillation telescopes;
 - at high beam intensity (~10⁷ p/s) by registration of pp-elastic scattering on the CH₂ target;
- copper degrader to obtain proton energy variation.

CORRECTIONS FOR:

- solid angle acceptance of fission fragment;
- inefficiency of the proton monitor;
- a probability of two ore more protons appearance in the single bunch;
- an anisotropy of fission fragments and their energy losses in target.

at Intermediate Energies

November 11-12, 2004

Summary

- Neutron-induced fission cross-sections of actinide nuclei ²³³U, ²³⁸U, ²³²Th, ²³⁹Pu, ²³⁷Np, ²⁴⁰Pu and ²⁴³Am and sub-actinide nuclei ^{nat}Pb, ²⁰⁹Bi and ^{nat}W have been measured in neutron energy range from 1 MeV to 200 MeV in two experiments at GNEIS facility.

- The fission cross-section of ²⁴³Am in the neutron energy range from 40 MeV to 200 MeV has been measured for the first time.

- The neutron-induced fission cross-section of ^{nat}W has been measured for the first time with a "white" neutron source.

- Statistical accuracy of measured fission cross-sections of actinides ²³³U, ²³⁸U, ²³²Th, ²³⁹Pu and ²³⁷Np is less than 1%, that of actinides ²⁴⁰Pu and ²⁴³Am is about 2%, that of sub-actinides ^{nat}Pb and ²⁰⁹Bi varies from about 5% at 60 MeV to 1.5% at 200 MeV and that of ^{nat}W varies from 19% at 100 MeV to 7% at 200 MeV.

- Detailed analysis of systematic errors has been done.

- In general, in the overlapping energy regions (below 20 MeV) our data are in reasonable agreement with previous data obtained mainly at electron linacs.

- There is a significant disagreement between data of Shcherbakov *et al.* (2001) and that of Lisowski *et al.* for ²³³U, ²³⁸U, ²³⁹Pu and ²³²Th above 20 MeV while for ²³⁷Np both data sets are not in contradiction.

- There is some disagreement between data of Laptev *et al.* (2004) and that of Staples and Morley for ²⁴⁰Pu above 40 MeV. On our opinion, most of the differences are in normalization rather than shape.

- For ²⁴³Am data of Laptev *et al.* (2004) shows a good agreement with that of Behrens *et al.* and Goverdovskiy *et al.*, there are significant disagreements between previous data sets.

- The libraries' evaluations, theoretical calculations of Maslov *et al.* and evaluation of Ignatyuk *et al.* correspond other data sets rather than Laptev *et al.* in case of ²⁴³Am. Normalization of data of Laptev *et al.* for ²⁴³Am to libraries' 14 MeV value withdraws this disagreement.

- There is a good agreement between data of Shcherbakov *et al.* for ^{nat}Pb and ²⁰⁹Bi and previous data.

- There is generally good agreement between data of Laptev *et al.* for ^{nat}W and those of Smirnov *et al.*, except for a possible discrepancy in the 90-100 MeV region.

- Measured fission cross-section of ²⁰⁹Bi by Laptev *et al.* reproduces very carefully that measured in frame previous experiment of Shcherbakov *et al.*

- Proton-induced fission cross-sections of actinide nuclei ²³³U, ²³⁵U, ²³⁸U, ²³²Th, ²³⁹Pu and ²³⁷Np and sub-actinide nuclei ^{nat}Pb and ²⁰⁹Bi have been measured in proton energy range from 200 MeV to 1000 MeV at PNPI proton synchrocyclotron by Kotov *et al.* (2003). Results of measurements in case of ²³³U, ²³⁵U and ²³⁸U are presented.

- A statistical accuracy of the measured fission cross section by Kotov *et al.* was better than 1.5%, the overall accuracy was better than 10%.

- The cross sections for proton induced fission of ²³³U in the energy range 200-1000 MeV was obtained by Kotov *et al.* for the first time.

- According to opinion of Kotov *et al.*, their results for ²³⁸U in the energy range from 300 to 900 MeV do not agree with a majority of the early-obtained data.

Pulse height spectra observed at different neutron energies for ²⁰⁹Bi

Pulse height spectra observed at different neutron energies for ^{nat}W

