

# **PIE Analysis for Minor Actinide**

#### Kenya SUYAMA

Criticality Safety Laboratory, Japan Atomic Energy Research Institute

2004 Symposium on Nuclear Data 11,12 November 2004



#### Purpose

To reconfirm "what is necessary" for improvement of nuclear data of MA from the view point of PIE analysis.

■ MA: <sup>237</sup>Np, <sup>238</sup>Pu, <sup>241</sup>Am, <sup>243</sup>Am,

<sup>244</sup>Cm,<sup>254</sup>Cm



#### Contents

► Quick Review of MA Generation.

Status of PIE data of MA.

Status of Analysis.

Conclusion and Proposal.

11,12 November 2004

#### **MA Generation Chain**

Criticality Safety





#### **Quick Review of MA Generation(1)**

|                                                      | Half life<br>[year]  | Main Generation chain                                          | σ <sub>c</sub><br>[barn]* | σ <sub>f</sub><br>[barn]* |
|------------------------------------------------------|----------------------|----------------------------------------------------------------|---------------------------|---------------------------|
| <sup>237</sup> Np                                    | 2.14×10 <sup>6</sup> | > <sup>238</sup> U(n,2n) <sup>237</sup> U ⇒ β <sup>-</sup>     | 33                        | 0.54                      |
| ~                                                    |                      | (6.75 day)                                                     |                           |                           |
| -                                                    |                      | $>^{236}$ U(n, $\gamma$ ) $^{237}$ U $\Rightarrow \beta^{-1}$  |                           |                           |
| ~                                                    |                      | (6.75 day)                                                     |                           |                           |
| ~                                                    |                      | $>^{241}$ Am $\Rightarrow \alpha$ (432 year)                   |                           |                           |
| <sup>238</sup> Pu                                    | 87.7                 | $>^{237}$ Np(n, $\gamma$ ) $^{238}$ Np $\Rightarrow \beta^{-}$ | 29                        | 2.4                       |
| ~~                                                   |                      | (2.11 day)                                                     |                           |                           |
|                                                      |                      | $ ightarrow^{242}$ Cm $\Rightarrow \alpha$ (163 day)           |                           |                           |
| ~                                                    |                      | <sup>▶239</sup> Pu (n,2n)                                      |                           |                           |
| * JENDL-3.3 ; PWR 17×17 Fuel Assembly Equiv.Pin Cell |                      |                                                                |                           |                           |



#### **Quick Review of MA Generation(2)**

|                   | Half<br>life<br>[year] | Main Generation chain                                              | σ <sub>c</sub><br>[barn]* | σ <sub>f</sub><br>[barn]* |
|-------------------|------------------------|--------------------------------------------------------------------|---------------------------|---------------------------|
| <sup>241</sup> Am | 432                    | $>^{241}$ Pu $\Rightarrow \beta^{-}$ (14.4 year)                   | 118                       | 1.2                       |
| <sup>243</sup> Am | 7,370                  | ≥ <sup>241</sup> Pu(n,γ) <sup>242</sup> Pu (n,γ) <sup>243</sup> Pu | 49                        | 0.44                      |
|                   |                        | $\Rightarrow \beta^{-}(5h)$                                        |                           |                           |

\* JENDL-3.3 ; PWR 17×17 Fuel Assembly Equiv.Pin Cell



#### Quick Review of MA Generation(3)

|                                                      | Half<br>life<br>[year | Main Generation chain                                                                          | σ <sub>c</sub><br>[barn]* | σ <sub>f</sub><br>[barn]* |
|------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------|---------------------------|---------------------------|
| <sup>244</sup> Cm                                    | <sup>]</sup> 18.1     | $>^{243}$ Am(n,γ) $^{244/244m}$ Am<br>⇒β <sup>-</sup> (10.1h/26m)<br>> <sup>243</sup> Cm (n,γ) | 18                        | 0.82                      |
| <sup>245</sup> Cm                                    | 8,500                 | > <sup>244</sup> Cm (n,γ)                                                                      | 18                        | 118                       |
| * JENDL-3.3 ; PWR 17×17 Fuel Assembly Equiv.Pin Cell |                       |                                                                                                |                           |                           |

#### Criticality Safety Quick Review of MA Generation (4) JAERI Reactivity Worth of <sup>242-245</sup>Cm **OECD/NEA/NSC** 1000 WPNCS/EGBUC First Generation MOX Later Generation MOX 800 Reactivity Worth [pcm] **"Burnup Credit** SRAC95 + JENDL-3.2 **Criticality Safety** 600 **Benchmark** Phase IV-A" 400

**Reactivity Prediction** Calculation for Infinite Arrays of PWR MOX **Fuel Pin Cells** 

40

200

0

20

-200

60

#### Criticality Safety JAERI

(5)

### **Quick Review of MA Generation**

- MA accumulates through several generation paths. Accumulation during the cooling time (long).
  - example: <sup>237</sup>Np, <sup>238</sup>Pu
  - Chain Analysis is required.

MA cross section's importance depends on the considering fuel cycle strategy and time scale.

Which isotope has the priority ?



# SFCOMPO – a Database of Isotopic Composition

Isotopic Composition Database – SFCOMPO.

- Developed in JAERI
- Operated in OECD/NEA/DB

http://www.nea.fr/html/science/wpncs/sfcompo/



#### Number of PIE Samples - Total





### Number of Samples (2) – Burnup





### Current PIE Status (1)

#### ➢ France

- Active, but impossible to reach raw data
  - funded by Industries(EDF,COGEMA)



 Belgonucleaire is active, but they are conducting commercial international programs (ARIANE)

#### Switzerland

PSI joins BN's program



### Current PIE Status (2)

Japan
 JAERI <u>had</u> the PIE activity. But, now, no program to obtain MA composition.

See also, Special Session on PIE in ICNC2003.

> http://typhoon.tokai.jaeri.go.jp/icnc2003/html/ TopicSS.htm)



# Example of PIE Analyses –

MVP-BURN

C/E Values : PIE data from Mihama-3 PWR

|                   | JENDL-3.2 |      |      | JEF-2.2 | ENDF/B-6 |
|-------------------|-----------|------|------|---------|----------|
|                   | MVP       | SWAT | SRAC | SRAC    | SRAC     |
| <sup>237</sup> Np | 0.90      | 0.95 | 0.91 | 0.92    | 0.93     |
| <sup>238</sup> Pu | 0.81      | 0.83 | 0.81 | 0.85    | 0.85     |
| <sup>241</sup> Am | 0.97      | 0.99 | 0.97 | 0.96    | 0.98     |
| <sup>243</sup> Am | 1.00      | 0.99 | 0.98 | 0.95    | 1.07     |
| <sup>244</sup> Cm | 0.78      | 0.76 | 0.74 | 0.72    | 0.82     |

K. Okumura et al., J. Nucl.Sci.Technol.37(2),pp.128-138 (2000).

## Example of PIE Analyses -APOLLO2(1)

#### C/E-1 [%] Values : PIE data from Takahama-3 PWR

|                                     | JEF-2.2 | JEFF-3.0 | total $\sigma$ |
|-------------------------------------|---------|----------|----------------|
| <sup>237</sup> Np/ <sup>238</sup> U | -8.1    | -3.7     | 0.7            |
| <sup>238</sup> Pu/ <sup>238</sup> U | -18.9   | -14.1    | 3.8            |
| <sup>241</sup> Am/ <sup>238</sup> U | 4.0     | 4.7      | 3.2            |
| <sup>243</sup> Am/ <sup>238</sup> U | -14.8   | -7.7     | 4.7            |
| <sup>244</sup> Cm/ <sup>238</sup> U | -26.5   | -19.3    | 6.4            |
| <sup>245</sup> Cm/ <sup>238</sup> U | -33.4   | -22.9    | 7.7            |
|                                     |         |          |                |

A. Courcelle et. al, "Proc. of PHYSOR-2004, Chicago, USA (2004).

# Example of PIE Analyses -APOLLO2(2)

- Increase of Capture Resonance Integral of <sup>235</sup>U.
  - evaluation by Leal et.al
- Increase of (n,2n) Reaction Cross Section of <sup>238</sup>U.
  - 6.5E6 to 1.2E7 eV

Larger <sup>241</sup>Pu Capture Cross Section at 0.26eV Resonance.

Integral Experiments (MISTRAL)

A. Courcelle et. al, " Proc. of PHYSOR-2004, Chicago, USA (2004).

# (n,2n) Cross Section of <sup>238</sup>U

Criticality Safety JAERI



# Capture Cross Section of <sup>241</sup>Pu



20



#### JENDL-3.2 and JENDL-3.3(1)

C/E Values : PIE data from Takahama-3 PWR

|                                     | JENDL-3.2 | JENDL-3.3 | J3.3/J3.2 |
|-------------------------------------|-----------|-----------|-----------|
| <sup>237</sup> Np/ <sup>238</sup> U | 0.97      | 1.01      | 1.04      |
| <sup>238</sup> Pu/ <sup>238</sup> U | 0.82      | 0.86      | 1.05      |
| <sup>241</sup> Am/ <sup>238</sup> U | 1.14      | 1.10      | 0.96      |
| <sup>243</sup> Am/ <sup>238</sup> U | 0.89      | 0.90      | 1.01      |
| <sup>244</sup> Cm/ <sup>238</sup> U | 0.75      | 0.75      | 1.00      |
| <sup>245</sup> Cm/ <sup>238</sup> U | 0.80      | 0.79      | 0.99      |



#### JENDL-3.2 and JENDL-3.3(2)

Increase of Capture Resonance Integral of <sup>235</sup>U by adopting the evaluation by Leal et.al(JEFF-3.0).

► Harder Fission Spectrum of <sup>235</sup>U.

Larger <sup>241</sup>Am Capture Cross Section shows better results of <sup>241</sup>Am.

Cm isotopes are still underestimated.



#### Conclusion (1)

Improved Prediction of MA amount in SNF is important issue in nuclear data evaluation.

Difference among codes and libraries are large. Generally, MA is still underestimated (~10-20%).

Current evaluation in JENDL-3.3 and JEFF-3.0 towards "improvement". However, MA is still underestimated.



### Conclusion (2)

- Accessing new PIE data in Japan seems to be difficult.
  - "International collaboration" is attractive, but is not omnipotence.
- Mutual comparison among codes and libraries is necessary.
  - Step-by-Step approach to collect <u>a piece of</u> <u>evidence</u>



#### Conclusion (3)

- Required Tools for Mutual comparison:
  - Automated system to generate reactor constants for several neutronics codes,
  - System to replace selected data in libraries (selection of isotope, reaction) to conduct sensitivity analysis, and

 Development of open database to compare calculation results and PIE data.



#### Conclusion (4)

#### Place for discussion among nuclear data users, evaluators and experimentalists

#### Criticality Safety <sup>245</sup>Cm in Irradiated in UO<sub>2</sub> Fuel JAERI

