EXPLANATION OF TABLE

The nuclides listed in the Table lie in the range $2 \leq Z \leq 130$, $2 \leq N \leq 200$ with the following limitation. On the neutron-rich side, we limit to nuclei with $S_n(Z, N) > -1.2$ MeV or $S_n(Z, N - 1) > -1.2$ MeV. We put this rather moderate limitation because there is some uncertainty in the mass formula and, in addition, the mass data of unstable neutron-rich nuclei are often used to study the neutron-emission instability experimentally. On the proton-rich or neutron-deficient side, we limit to nuclei with $S_p(Z, N) > -Z/50 - 1.2$ MeV or $S_p(Z - 1, N) > -(Z - 1)/50 - 1.2$ MeV. We sometimes need mass data of the nuclei outside the proton-drip line. In order to determine the above limit, we have checked the current experimental data in the proton-emission region. The number of nuclides in this table is 9432, and the number of the ‘stable’ nuclides against particle emission, which are defined by $S_n > 0$, $S_{2n} > 0$, $S_p > 0$, $S_{2p} > 0$, is 6617.

Z Proton number.
N Neutron number.
A Mass number.
El Element symbol. For element symbols from $Z = 104$ to $Z = 109$ we use those adopted by International Union of Pure and Applied Chemistry (IUPAC) in 1997.

M_{cal} Calculated mass excess in MeV.
\ast One-particle-unstable nuclide determined by $S_n(Z, N) < 0$ or $S_p(Z, N) < 0$.
$\ast\ast$ Two-particle-unstable, but one-particle-stable, nuclide defined by $S_n(Z, N) > 0$ and $S_{2n}(Z, N) < 0$, or $S_p(Z, N) > 0$ and $S_{2p}(Z, N) < 0$.
\diamond β-stable nuclide defined by $Q_{\beta E}(Z, N) < 0$ and $Q_{\beta^+}(Z, N) < 0$.
$\alpha_2, \alpha_4, \alpha_6$ Deformation parameters.
E_{sh} Shell energy in MeV.
S_n Calculated one-neutron separation energy. (MeV)
S_{2n} Calculated two-neutron separation energy. (MeV)
S_p Calculated one-proton separation energy. (MeV)
S_{2p} Calculated two-proton separation energy. (MeV)
M_{exp} Experimental mass excess in MeV. We use the recommended masses of Audi-Wapstra95 excluding their systematics values. We take the significant figures down to 0.01 MeV in conformity with the list of calculated mass excesses. We do not calculate value, or no experimental value in Ref. 2).

References